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ABSTRACT

The turbulent free . .ivection of air above a 2-foot diameter,
heated horizontal plate has been studied experimentally and numerically.
The mean temperature fields and the indraft profiles for two mean plate
temperatures were measured using a thermocouple and a constant tempera-
ture hot-wire anemometer, Also, the turbulence and mean velocity were
: measured for the higher plate temperature using the hot-wire method.
) .The flow field was visualized by shadow photograph technique. From
visualization and measurements, it was found that the region of signi-~
ficant deviation from ambient t ‘mperature and velocity was restricted
to a region near the plate centerline (the primary flow region). The
indraft velocity was found to be relatively large near the ground level
(within approximately 1" of the ground).

The major temperature drop took place in the region very near the
plate. Within 0,02" of the plate the temperature distribution in the
air could be calculated based on conduction only. This region was .. . —~
therefore, called the "conduction layer." At a given mean plate tempera-
ture, the temperature gradient was found to increase with the radius.
Data obtained from heat-transfer measurements were consistent with the
one~third power correlation reported in.the literature,

The turbulence in the flow field was found to consist of low
frequency and high amplitude fluctuations (on the order of 10 Hz and
1 ft/sec). Because of the limitation of the hot~wire technique for
large turbulence measurements, flow velocities could not be deduced
directly from hot-wire data. To remove this difficulty, a numerical
data simulation scheme has been developed in which the parameters
descriping the tu.dulent flow (r.m.s. fluctuations and correlation
coefficients) were used as input., By inferring from the simulated data
of know parameters, experimental hot-wire data reduction was then
possible. Data reduction model was validated by numerical experiments.

The eddy diffusivity in the region away from the conduction layer
| was estimated based on temperature, velocity and turbulence data using
' two independent methods. The agreement was good, The spatial varia-
tions of the eddy diffusivity in most of the primary flow region was
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found to be gradual with rapid drops occurring in the region between
the primary flow and the ccld ambient.

A numerical fiow calculation was made. The mathematical formula-
tion was baged on Boussinesq approximations using a constant eddy
diffugivity model. A turbulent Grashof number Grp (the governing
parameter) was defined through the definition of a characteristic plate
temperature rise Afp, the plate mean heat flux and the eddy diffusivity.
Grqp and Afr were obtained based on the best fit of experimental and i
numerical centerline temperatures. :

- By the specification of Afyp at the plate surface, the effect of
the intense variation of eddy diffusivity in the conduction layer region
could be avoided in the numerical calculations. Numerical results

' based on a constant eddy diffusivity model were obtained and compared
with the experimental data. Due apparently to the non-constancy of
the eddy diffusivity, the calculated temperature and velocity profiles
exhibit less constriction than the experimental data. Therefore a more
general turbulent transport model will be required to provide a good
theoretical description of the phenomena.
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I. INTRODUCTION

The research described in this thesis is sa investigation of the
turbulent flow fieid above a heated circulasz plate mcunted fiush with
a large horizontal surface, hereafter callad the ground. The motivation
for this work was provided by the hypothesis that the heated fiat piate
is a proper model for scme of the interesting features of lavge area
fires. The relaticnship between this model and fire prablems is
discussed in detail in Appendix A,

The flow field above a heated surface is generated b& the upward
motion of the heated air adjacent to the plate, The temperature field
is determined by the interaction betweex heat traasfer érau the place
and ingestion of ambient air, Features of primary interest are the
updraft above the plate, the indraft near the ground, and the tempsrature
field. For mathematical simplicity, thic problem may be modeled by a

i . - -t~
cireular heat source of finits radius R at &iev

tioh ¥ = O, in the
semi-infinite region Y 2 O, The updraft is the result of the bucyancy
of the heated air above the plate. To replace the upward moving hot alr,
there is induced an indraft of the cold ambient air moving toward the
plate in a more or less horizontal direction, There are no significant
thermal effects in this induced flow, Complex interactions batween

these two distinctively different types of flow taks place in the region
near the plate., This fact precludes the applicability of the familiar

boundary layer approximations,
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Iheore:ié;l investigations of free convection problems have been
concerned primirily with problems of simple geometry such as a fiuid
layer above a large, horizontal, heated surface, or cne located between
two iazge, horizontal, parzllel surfaces. These geometries allow one-
dimensional formulations. Using Boussinesg approximations (1),*

Howard (2) obtgined a solution for the one-dimensional turbulent soavece

tion above a heated horizontal surface. He hag demonstrated agreement

At some distance above the surface where the updraft is a dominant
feature, the flow resembles a free jet. This flow region is called the
convection plume. The boundary layer approximations are then applicable
(4). Similarity solutions have been cbtained for problems such as
convection above a line heat source or a linear heat source of finite
wiﬁth. The results ;re in reasonable agreement with experimental
measurements (e.g.; reference 5, 6 and 7). Because of the conditions
of zero average shear stress and heat flux along the plume axis and at
infinity, the shear stress and heat flux terms appearing in the governing
differential equations may be eliminated by integration in the trans-
verse direction from the plume axis to infinity. The solution te the
préblem may be obtained by use of either assumed or measured profile

functions of mean temperature and velocity in the transverse directionm.

*
Numbers in parentheses indicate references listed in
the Bibliography.
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Since nc explicit knowledge of the turbulence structure is necessary
for obtaining the plume solutions, the study of turbulence structure
even in the plume region has been only in the fnfant stage {3).

For multi-dimensional flows of the type studied in this investiga-
tion, the highly non-linear nature of the governing equaticns effectively

precludes analytical solutions. Recent development in numerical metheds

1D A SRR SRR A YN PN YA VA A N Dl NS

utilizing large digital computers has made possible the treatment of

n e

some of the non-ilinear features in the equations of motion, for such
problems 28 convection in an enclosed cavity (9), and wake flow behind

an obstacle (10). Reasonably successful solutions can usually be

CONTAEMORIA ATILOrT SN s &

obtained for problems of this nature. An additional uncertainty in the

¢

problem formulation for the work described here derives from the fact

e

that an infinite domain must be approximated by a finite one and it is
not clear how to specify boundary conditione at the artificial boundaries.
Beyond this, it is in general not easy to demonstrate that the results

of numeérical calculations of complex mon-linear phencmena actually
constitute a valid selution of the problem as formulated.

In view of these multiple uncertainties, the proper initial

; approach is to build understanding on the basis of a simple numerical

calculation model which is easily interpreted in the light of experi-

mental evidence and which can be reduced to analytically tractable

WG HemeT

limiting csses for validating the calculations, This approach has,

toc varying degrees, been followed for several free convection problems
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{(e.g., references 11, 12, 13), Among these, only cne (13) describes

numerical flow field calculations directly relevant to-the present

problem, Unfortunately, no correlation with experimental data was

reported.

Although there exists a large body of experimental literature

concerning free convection in general, very little is reported which is

directly applicable to the present study, The particularly difficult

experimental feature of this problem is the accurate measurement of

the flow velocity vector, For any reasonable experimental dimensions,

velocities near the heater plate are small, i.e., on the order of a
fraction of a foot per second, Moreover, turbulent fluctuation

velocities in some regions of the flow field are of the same order of

maganitude as the mean. In the experimental portion of this investigation,

a hot-wire anemometer was used to obtain flow field data, Toward the

low end of the velocity range of interest, hot-wire techniques suffer

from orientation effects due to local perturbation of the flow by the

hot-wire itself. Recently, laser doppler techniques (14,15) have beea

developed which may cbviate most of the difficulties associlated with

hot-wire techniques. Howsver, these techniques appeared after the hot-

wire measurements reported in this thesis were well underway, and were

not used for the presemt work.

SCOPE_OF THIS WORK

This thesis consists of two major parts: experimental measurements

and numerical flow and temperature field calculations. A constant
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temperature hot-wire anemometer together with a thermocouple was used
for obtsining the velocity and temperature data. The numerical calcula-
tion was intended for exploring the qualitative features of the flow
field, Therefore, calculations were made based on the Boussinesq
approximations (1) incorporating a constant eddy diffusivity model.

With the mesh spacing (0.75 inch) used in the study, the flow between
the ground and the nodel points next to it cannot be predicted, Since
the indraft at the ground level is one of the most interesting features
in the flow field, the numerical results must be supplemented to make
possible the indraft prediction very near the ground. This was

accomplished by an integral method.
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II. LITERATURE SURVEY

The quantitative investigation of a fluid layer heated from below
may be traced back to the late 1800's when Thomson (16) and later
Benard (17) observed the flow patterns following the onset of thermal
instability. Lord Rayleigh (18) used a linearized stability theory and
established the criterion (a critical Rayleigh Number) at which convective
motion commences. Since then the linear instability properties for
fluid layers of infinite horizontal extent have been studied by a
number of investigators. A comprehensive account of this type of
problem appears in Chandrasekhar's book (19).

The convection which develops due to a heated surface of finite
size is the subject of concern in this investigation. Due to the three-
dimensionality of the flow configuration, this problem is quite different
from that due to an infinite surface. Linearization has not been
possible, and no analytical approach to this problem has been reported
in literature,

Examination of the available literature reveals that knowledge of
the turbulent flow field above a heated horizontal plate of finite
extent exists only in a primitive state. This may be attributed to the
intrinsic non-linearity of the basic governing equations., It is
complicated further by the lack of an adequate description of the
turbulent transport mechanism. Relevant experimental, mathematical

and numerical studies are discussed below.
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EXPERIMENTAL STUDIES

The measurement of free convection above a heated horizontal surface
was apparently first reported by Ramdas (20,21). He measured temperature
variations above heated land surface (e.g., during the day) and concluded
that the variation of temperature was most rapid nearest to the surface,
and was linear. Information of this type is important to the under-
standing of mass movement of the atmospheric air (wind formation) and
many early investigations were made by meteorologists (e.g., references
22, 23, 24),

Heat transfer data of an engineering nature were presented by
Schmidt (25), who photographed the boundary layer formed in the
neighborhood of a heated horizontal plate. Later, Fishenden and
Saunders (26) measured the heat transfer from horizontal, rectangular
plates of sizes up to 2-foot square and at temperature up to 10000F above
the ambient, They presented data for both the cases of a heated surface
facing up and facing down bur gave no detailed description of the
experimental configuration. The data were correlated in the familiar
fashion of Nusselt Number (Nu) versus Rayleigh Number (Ra). For the
turbulent range, the data gave the correlation:

Nu = constant (Ra)1/3

Since Nu contains a length scale and the heat flux to the first
power and Ra contains a length scale to the third power, the above

correlation implies that the heat flux is independent of length scale

in the turbulent regime. A comprehensive summary of the heat transfer
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data from horizontal plate was compiled by Jakob {27), however, litcie
in the way of experimental detail and measurement technique were
diseussed.

Townsend {3) measured the temperature fluctuations above the
middle of the uniformly heated bottom of an open-topped box (30cm x 4Jexm
X 56cm high). All the measurements were made within 8 cm of the bottom
surface. The mean temperature distribution mear the surface was
reasonably linear. From the implied temperature gradient and the overall
neat transfer, he obtained the same correlation as did Fishenden and
Saunders (26). The data showed relatively large scatter when the surface
temperature was high. 7The largest temperature fluctuations occurred
within 0.5 cm of the surface and were about 20% of the temperature
difference between the plate and the ambient. The rate of spatial
temperature decay was found to decrease with plate cemperature.

Tritton (28) investigated the turbulent free convection above a
heated plate inciined at a small angle to the herizontal. He used a
resistance wire thermcmeter to measure the temperature and a quartz
fiber anemometer to measure the velccity parallel to the plate in the
boundary layer regicn. He found that the temperature field was not
greatly altered due to plate inclination (no systematic variations were
observed) and that the mean temperature field was largely controlled by
the turbulence. He succeeded in measuring the velocity in the boundary
layer region by observing the deflection of a cantilevered quartz fiber
in the flow field. This method, however, was apparently handicapped by

the lack of a continuous recordiag technique.
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Project FLAMBEAU (29) is a program of research on large area fires.
During recent years, a large amount of experimental data (e.g,, fuel
consumption rate, flow and tcoperature £ield informatiom, radiation
effects, etc.) has been collected from large size experimental fires of
horizontal length scale up to 1000 feet. Little systematic analysis cof
these data has been reporred.

Recently, Parker, Corlett and Lee {30) attempted to test the

hypothesis that Grashof number is unimportant in determining such flow
field characteristics as infiow velocities. Using & hot-wire anemometer,
they measured the inflow velocity at the edge of a square array (24™ x
24"y of horizontally arranged electric heater elements which, according
to the hypothesis, should scale the September 1967 FLAMBEAU test fire,
Insofar as the severely limited prototype data permitted comparison, the
hypothesis was found correct.

hore data of the same work in improved

form may be found in reference 31.

MATHEMATICAL STUDIES

Boussinesq (1) in 1903 introduced nis well-known approximations for
calculating thermal convection probiems, The Boussinesq approximations
are: (1) Demsity variation cdue to pressure (as cpposed to temperature)
variation is legligible; (2) Density variation in “ue governing

differential equations is negligible except in the buoyancy term in the

momentum equatiocn.

The mathematical formulation of the problem of free convection from

a horizontal plate was discussed by Stewartson (32). He demonstrated
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that boundary layzr approximations were no longer applicable, Thus,
purely mathematical treatments of this problem have so far been restricted
to the one~dimensional case. Howard (2) formulated a one-dimensional
problem using the Boussinesq approximations. He was able to predict
Townsend's experimental data (3) from his calculations.

Recently, Morton (8) has discussed the turbulent transport in &
convection plume and formulated the plume problem afresh. His calcula-

tions are in preparation.

NUMERICAL METHOD

Numerical methods are a very powerful tool for solving non-linear
and multi-dimensional flow problems. Several numerical flow calculations
for free convection problems appear in the literature., These calculations
have all been based on the formulation using Boussinesq approximations
incorporating the assumption of constant fluid properties or constant
eddy diffusivities, and have dealt with prcoblems with well defined
boundaries (within a rectangular cavity, e.g.). In most procedures a
time advancing (transient) scheme has been used to obtain eventually
steady state solutions, Typical of these are work by Wilkes (9),
Deardorff (33), and Fromm (34). Torrance (43), in a recent paper, has
made detailed comparisons of five transient type finite-difference
computation schemes (9,34,43) for laminar free convection in a vertical
axisymnetric enclosure with a small heated spot centrally located on the
floor. He concluded that the calculated flows for all methods were

similar and the vequired computer times were also of comparable magnitudes.,
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The work by Nielsen (13) is probably the most directly relevant to
this thesis. He calculated the flow field due to free convection over a
heated, horizontal, circular surface. The calculation was intended for
the modeling of the flow fields generated by a msss fire. A steady state
formulation including possible rotation about the axis of symmetry was
chosen. The use of Boussinesq approximations and constant eddy diffusivity
assumption in his calculations reduced the governing differential equations
to the form of a laminar flow problem in which Grashof number is the
gover;ing parameter. Because of the rather large equivalent laminar
Grashof number implied in his calculations (‘~1010) through the choice
of eddy diffusivity (20 ftz/sec), diameter (4340 ft) and surface tempera-
ture rise (200°F - 800°F), the validity of his results is uncertain.
His results showed that earth rotation has little effect on the overall
behavior of the flow field. No interpretation or experimental correlation
was reported in reference (13).

Laminar free convection due to a heated horizontal plate (35) and 2
horizontal disk (36) in a full space for small Grashof numbers (<300)
have been reported in the recent literature. These studies were carxied
out using the Boussinesq approximations, coast+.t fluid properties and a
steady state formulation. At the conc.usions of their report, Kane and
Yang (36) recommended the stuay of cases for higher Grashof numbers using

a transient type formulation such as that reportea 1in references (9),

(34) and (43). This particular work incorporatirg a Grop defined
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explicity in terms of an equivalent surface temperature rise was carried
out in the numerical calculation part of this thesis. The details are

discussed in Chapter VI,




I1I. DESCRIPTION OF EXPERIMENTAL WORK

The objective of the experimental program was to investigate the
turbulent flow and temperature fields above a heated, circular, hori-
zontal plate which was mounted flush with the ground surface. Both flow
visualization and flow and temperature field measurements were conducted

in this program.

EXPERIMENTAL APPARATUS

The experimental apparatus for this study consisted of three major
items: the heater assembly, the traversing mechanism, and the platform
assembly. The size of the experimental apparatus was designed so that
fully turbulent flow could always be obtained. Since any laboratory size
free convection flow field is very weak, any side wind would easily break
the flow symmetry. Therefore, the experimentation was conducted indoors,
The overall arrangement of the apparatus is shown in Figure la.

Flow visualization is a useful means of gaining understanding of a
flow field. Shadow observation ana pnotography are well suited to this
problem. The required collimatec light was approximated by a high
intensity mercury arc lamp placed at a large distance from the heated
plate, Therefore, a basement laboratory adjacent to a long hallway was
chosen as the site of the experiment. This location was also desirable

because it was free from air currents that woulc disturb the light path.
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Heater Assembly

The heater assembly used in the appararus is shown in Figure 2. A
one-half inch thick by 24 inch diameter aluminum plate was heated by
radiation from an electrical hearing unit located directly below it. The
heater agsembly was mounted in the center of an 8' x 8' horizontal, wooden
platform such that the aluminum plate surface was flush with the floor of
the platform which simulated the ground surface. Electricity was supplied
to the heater unit by a variable voltage power transformer (0 - 110 veolt).
By this means the power imput to the heater unit could easily be set for
each experimental runm.

Number 14 Nichrome V wire was used for heating. It was placed in
equally spaced (0.4" apart) parallel slots cut in a 1/2" chick by 24"
diameter transite board. This arrangement permitted free lengthwise
movement due to thermal expansion., The wire was held in place by a
1/8" thick by 24" diameter copper plate. A 1/16" thick asbestos sheet
was sandwiched between the copper and the transite plates for electrical
insulation. The heating unit was placed in an aluminum pan which was
insulated on the inside wall with a high temperature insulation.* The
aluminum plate was supported freely by the heads of four equally spaced
bolts protruding from the aluminum pan. The outside surface of the

copper plate in the heating unit and the underside surface of the aluminum

%*
INSULAG, k = 0.7 But-in/hr-£t2-CF at 1000°F and lower for lower
temperatures, Detailed information may be found in Bulletin No,
332-A, Quigley Co., 415 Madison Avenue, New York 17, New York.
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plate were painted with matte black high temperature paint. A 1/2" air

gap was maintained between these two painted surfaces. Due to the high

thermal conductivity of copper and the closely spaced heating wire, the

temperature of the copper plate wis very uaiforn.™™ This arrangement

permitted indirect heating by radiation which insured a uniform heat

flux to the aluminum plate. The aluminum pan was supported at its

ekl
periphery by the platform. An insulation jacket was placed outside

the aiuminum pan for the purpose of low temperature insulation., The
heat loss through this insulation was about 25% of the total electrical

power input to the heater assembly. With temperature measurements at

various locations in the insulation jacket, an energy balance calculation
could be made for the heater assembly.

Traversing Mechanism

The traversing mechanism is shown in Figure la and 1b. It was

designed to provide for translation of a hote-wire probe in three mutually
perpendicular directions (translation parallel to the vertical axis of
the plate, and horizontal translations in the radial and the tangential

directions) plus rotation about the probe axis,

“Fuller paint -~ flat black primer. Ordinarily used for painting
fireplace walls, Satisfactory for temperatures up to 1000°F,

“Based on the lateral surface area, 207 of the heat loss from the
side wall of the insulation jacket was assumed to be from the
copper plate. The radial ctemperature gradient thus calculated
was less than 1O0F/ft. i

**No. 4 vermiculite (a water-repellent masopry fill insulation) :
was used in the jacket (k = 0.53 Btu-in/ur-ft2-OF at 200°F, i
tabulated values of k may be found in Special Report No. 256,

Research Laboratory, Zonolite Company, 1827 Benson Avenue,
Evanston, Illinois.
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A traversing head supporteéd by an 8~foot long horizonral bar was used
o perait the radial movamant., The ends of this horizontal bar were
guided by two vertical supports fastened to the wooden platform for the
vertical sovement.

The method of mounting the hot-wire probe is shown in Pigure 3. The
hot-wire probe could be rotated by rotating either the probe holder or
the probe support., Tangential motion of the probe was achieved simply
by sliding motion of either the probe holder or the probe support.

Small ball bearings were used for guiding all translational movements
sxcept in the tsngential direction. A counterweigb- was used to balance
the weight of the horizontal bar so that it could easily be moved
veartically.

Platform Assembly

The platform assembly consisted of two main parts: the wooden plat~
form and the screens. The platform supported both the heater assembly
and the traversing mechanism., The floor of the platform was made of
two sheets of 3/4" x &' x 8' plywood placed side by side. A circular
opening large enough for the heater assembly was made at the
center of the floor. A small concentric circular opening was cut in a
piece of 3/4" x 4' x &' plywood board bolted below the floor. The step
thus formed served as a support for the heater assembly (see Figure 2),
Four pieces of 8-foot long angle iron were bolted to the bottom of the
floor for reinforcement, The floor was raised to a level approximately
10 inches above the floor of the laboratory and was firmly supported by

twelve wooden legs.
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To minimize the effects of eir currents inside the room, the region
above the platform was enclosed on all four sides by vertical sections of
ordinary window screen (14 x 18 mesh galvanized iron) and by a horizontal
section of screen positioned 7 feet above the platform. The screens were
made such that the traversing mechanism could be operated from outside of
the screen. Since the turbulent flow field was generated from the hot
plate which was far from the screens, and since the turbulence generated
by free convection must greatly exceed that in a calm ambient atmosphere,
the presence of the screens would have very little effect on the turbulnece

level in the flow field.

FLOW VISUALIZATION

General Discussion

Due to the large size of the apparatus, many of the well-established
flow visualization techniques, such as interferometry or the Schlieren
method, were ruled out for this study. Two basically different flow
visualization methods were investigated: smoke ttacing* and shadow-

graph., The latter method was finally chosen for this study because of

*A dense smoke is generated by pouring FOG JUICE (a petroleum
derivative, available in theatrical supply stores) on the hot
surface, The fluid is evaporated upon contact with the hot surface
thus forming a smoke which is indicative of the pattern of the
flow field. The heat flux available from the plate was small
(~0.25 Bavsec-ft2). Due to heat removal, the plate temperature
would drop so that shortly after the application of the fluid, it
was evaporated in an erratic manner, This limited the possible
observation period to only a few minutes at a time. The difficulty
of uniform application on the plate without disturbing the {low
was another undesirable feature of this method.
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the capability of wide coverage and unobstructed continuous observations.
The basic requirements for the shadow method are a collimated light beam
and a projecting screen. A General Electric B-Hé mercury vapor arc lamp
was used for the light source. This was & quartz-capcllary enclosed arc
1.5 mm x 25 mm with a totgal flux of 60,000 lumens. The lamp dissipated
900 watts and was cooled by a 30 psig air supply. In order to approximate
a collimated light beam, this light source was placed at the far end of
a hallway in the basement laboratory (e165 feet from the hot plate). A
translucent viewing screen made of a sheet of ordinary tracing vellum
was placed normal to the light path about 20 feet on the other side of
the hot plate. Due to the light transmission of the screen, it was found
quite satisfactory to view the shadow from hehind the screen,

For photography, a piece of household curtain material (aluminum
coated lining) was hung on the wall normal to the light path about 27
feet on the other side of the hot plate, Photographs were taken in
front of the screen at an angle just large enough not to block the light
path (Negative Tri X Pan 35 mm film was exposed f2 at 1/30 second and
developed in Acufine for an ASA rating of 1200).

Flow Field Description

The flow field about the heated plate was viewed using the shadow
method, Figure 4 shows the shadow pictures taken at two plate mean
temperatures by photographing the reflection of the shadows from the
aluminum coated lining screen. These pictures show that the overall

flow field consists of two major regions which are separated by a fairly
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well defined boundary. Above the plate and inside this boundary is a
region here called the primary flow region in which there is a dominant
upward moving stream of eddies. The upward flowing column is fully
turbulent and is constricted about the axis of symmetry {(the centerline)
of the plate., It may be seen from Figure & that the flow boundary is
more charply defined for higher plate temperature (or equivalently higher
heat flux). This phenomenon has been repeatedly observed.

Outside the boundary is the region of secondary flow which moves
across the boundary into the primary flow region to replace the upward
moving hot air. The temperature in the secondary flow is substantially
uniform. Because of this, it is impossible to visualize in the shadow
picture. The shape of the flow region boundary together with knowledge
of the velocities from direct observation suggest that the secondary
flow (the indraft) velocity is largest within a few inches above the
ground.

It was observed that the flow field could be upset by even a small
ambient disturbance. This is to be expected, in view of the very weak
velocity field., Careful observation of the shadow revealed an interesting
feature of the disturbed flow field. 1In a closed room of still air, the
flow field remains symmetric. If a small disturbance is introduced,
e.g., by placing a small piece of curled paper near the edge of the plate,
the flow field sometimes is disturbed. A clearly defined continuous
whirling column of finite width may be seen, as illustrated in Figure 5.

This whirl starts from the plate surface and eventually penetrates upward
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lor several heater plate radii. Ia shape this whirl may be straight or
curved, wide or narrow. It may stand szill or wander. Its life may
vary from a fraction of a second o a few seconds. Por large disturbances
such as bulk mocion of the vcom ajr, the occurrence of this whirl
becomes much more frequent and the whirl width may be as wide as 2 inches.
Purther studies of this phenomenon will certainly be of interest.

For the purpose of this experimental study, flow field symmet:y is
essential. In order to minimize any room disturbances which might
break the flow symmetry, the screens described in the previous section
were instailed, Shadow observarions showed that these screens did
indeed stabilize the flow field.

21e turbulence in the primary flow region is of course ancther
interesting feature of the flow tYisld. 1t is more approprizte ro describe
the turvulence in conjunction with the hotr-wire datz :3 the discussicn

of the turbulence will be postponed until Chapter V.

HEATER PERFORMANCE

In free convection flows, the piate temparature and the heat transfer
are related. The performance of the heater can be characterized by
either the mean temperature differeznce between the plate and its ambient
or the mean heat flux,

Plate Temperature

The surface temperature distribution of the heared aluminum plate

was measured by thirteen thermocouples installed in the four radially
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milled slsrs on the underside of the plate (Figure 6). These thermo-

couples were made from Number 24 "high accuracy” copper-conszantan wire

(L &% § Wire No. 24~53-11, error = £ 1/4°F at 175°F with reference junctica
at 32°P), and were connected to a 24 channel switching box which was

directly connected to a poteaticmeter. X.ly time mean temperitures were

measured. Figure 7 shows the mz2asured plate surfzce temperature distri-
butions for two mean plate temperatures. It is noticed that the plate

temperature is quite uniform in the central raegiom and drops off slightly

rtoward the edge of the piate. This fact is expected, and attributed to

the more effective cooling by the coid air near the edge of the plate

{censidering the fact of uniform heat flux input to the plate). Assuming

that the heat flux is proportional to the 4/3 power of the plate tempera-
rure rise above the ambient (27), this temgerature non-uniformity repre-

sents a maximum of 37 lccal heat fiux variation. As far as concerns the

boundary condition for the overall free convection flow field, this
slight temperature non-uniformity is imsignificant.

Energy Balance

Twenty No. Z4 iron-constantan thermocouples (L & N Wire No. 24-50-39)
were instalied in the insulation jacket of heater assembly for energy
balance measurements (Installation details are given in Figure 2). These
rhermocouples were also connected to a 24 channel switching box through
which any one of them could be connected to a potentiometer for reading.

The total energy loss from the heater assembly is the sum of energy

lost to the surrounding air “y radiation from the aluminum plate (Qp),
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by coavection and radiation from the asbestos ving (Qa), by convection
and radiation from the floor of the platform (Qf), and by conduction
through the insulation jacket (Qj).

The anet convective heat transfer from the heated plate to the air
above (Qc) is computed as follows:

Qe = Qy, " Usss = 3.413 EI - (QP + Qg +Qf + Qj)

where E = voltage drop across the heater, volt

I = current passing through the heater, ampere

Q = heat transfer rate, Btu/hr
Energy balances were made for two heater power settings. The detailed
calculations of these terms are given in Appendix B, A summary of all

the loss terms is tabulated below:

Table 1. Energy balance terms.

Runfl E I bp [&,]Qin || Q Qa | Qf | Q5 | Qe
|No. i volt { amp, °¢ |CF | B/hr B/gr B/hr }B/hr B/gr B/hr

1 §132 [8.6 | 520 |77 ;3880 |l 229 | 525 | 241 | 347 2538
2 108 [7.1 |410 {77 ) 2615 |1 133 | 359 | 114 | 240} 1769

It is clear that the loss terms are all small relative to Q.- Therefore,
the percent accuracy of Qc is betrter than any of the heat losses. As a
check, a direct energy balance measurement was made by blocking off the
heat dissipation from the aluminum plate. 1In this manner, the energy
input to the heater assembly at any given plate temperature would
represent the net heat loss from the assembly (less the radiative heat

loss from the aluminum plate). The results of this direct measurement
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and those calculated based on temperature measurements are shown.in
Figure 8.

Heat Transfer Correlation

An examination of the significant governing variables for the heat
transfer phenomenon leads to the following relation:

Nu = f(Pr, Gr, BA#®

where Nu = hD/k, Nusselt number,
Pr = uCp/k, Prandtl number,
Gr = gBAID® p2/m?, Grashof number,

and h, D, k, »#, g, B8 49, and p are, respectively, the average heat
transfer coefficient, plate diameter, thermal conductivity, dynamic
viscosity, gravitational acceleration, coefficient of volumetric expansion,
temperature difference between the plate mean and the ambient, and density.
For weakly buoyant flows (4,27,37,38) such as in free convection, the
parameter gA# is not significant enough to affect the flow by itself and

is absorbed in Gr. This can also be seen from the governing differential
equations for small density variations (see Chapter VI).

For free convection, the flow becomes fully turﬁulent when the
Grashof number is very large (>106). This can be achieved most effectively
by making D sufficiently large. Since the heat flux of a very large
surface can only be finite and cannot be affected by changing its size,
we assume that the heat flux is independent of the size D, i.e.,

Nu & (Gr)1/3
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Furthermore, experimental correlations (26,27) indicate that the primary
effect of Pr¥ can be taken into account by grouping it with Gr to form a
Rayleigh number Ra, i.e.,

Nu = constant x Ral/3
where Ra = PrGr. Using the property values of air at the ambient tempera-
ture, and the definition of heat flux (g, Btu/hr-ftz)

q = had

Nu and Ra for the two rums in Table 1 may be calculated. The relevant
values are given below:

Table 2. Dimensionless heat transfer parameters.

Run ff q, Beg/ g B Rl 1 er | nu | 6rx 10710 | pa x 10710

No. hr-ft hr-£ft°-
1 800 1.81 0.72 | 244 0.772 0.556
2 560 1.68 0.72 | 226 0.573 0.413

The above data are plotted in Figure 9 and are found to be in good
agreement with experimental results of Fishenden and Saunders (26). One

may observe that the result Nu & Ral/3

is consistent with the present
data, as expected. The proportionality constant was calculated to be
0.141, so that:

Nu = 0.141 x Rat/3, (3-1)

%
The Prandtl number for air is substantially a constant in
the range of temperature in this investigation.




VELOCITY MEASUREMENT

General Discussion

We are concerne'! with the velocity measurement in the turbulent
free convection regime. In a flow field of this type local mean velocity
varies up te 3 fit/sec, but the velocities over most of the flow field are
only on the order of a fraction of a foot per-second. The turbulence in
the flow field is characterized by low frequency, high amplitude fluctua-
tions (see Chapter V for detailed discussioms). Very little has been
reported in the literature concerning this type of velocity measurement,
Tritton (28,39) used a quartz fiber to measure the mean velocities in the
boundary layer region above an almost horizontal heated plate. He used
a telescope to observe the deflection of the cantilevered quartz fiber
in the flow field. Since there is no easily recorded signal, this method
is not considered suitable for large number of measurements. Very
recently, the laser doppler technique (1%,15) has been successfully
applied to turbulent flow field measurement. Aside from the obvious
advantage of undisturbed measurement, it is possible to use this technique
to measure both the instantaneous and mean velocity component in a desired
direction. No attempt was made to use this technique for the present
studies since the measurements for this experiment were well underway
before the possibilities of'using such a technique became apparent.

The hot-wire technique is very useful for turbulence measurements.
However, in slow velocity measurements, it suffers severely from

orientation effects due to the free convection field generated by the
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wire itself. Nevertheless, the ease of meeting the time response
requirement, ease of recording, and the immediate availability of the
required electronic components prompted the decision to use the hot-wire
method for this experiment. 1In order to minimize the effects due to
heat generated in the wire, earlier atrempts were centerad at making
the sensing wire as small as possible. The smallest wire used was
0.00012" diameter Ft-10% Rh wire, Unfortunately, wire of this size did
not survive the vibration resulting from large probe traveling. Moreaver,
as long as the wire 1s at a higher temperature than the ambient, free
convection effects are always present.

Collis (40,41) in his reports on fecrced convection of heat from
cylinders at low Reynolds numbers (Re = dVp/x ), gave the following

criterion:

Free convection effects are negligible when: Re > Gr1/3

This expression implies that free convection effects are unimportant when
the local flow velocity undisturbed by the wire is larger than (gﬁAoﬁl/B.
It shows also that free convection effects are independent of the wire
diameter and that they can be reduced by operating the wire at small
values of A4, the temperature difference between the wire and the ambient.
The resistance and, hence, the calibration of a thin wire tends to
drift due to self-straining. This situation may be improved by choosing
a large wire diameter and by properly soldering the wire to its supports.

Large wire diameter is desirable for its scrength but it reduces the wire
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resistance and hence the output signal (the voltage drop across the wire)
for fixed temperature operation. As a reasonable compromise, the hot-
wire chosen was dare platinum wire 0.001" diameter by €.5% long. This
kind of wire was fcund to be quite satisfactory ir terms of strength,
repeatability of results, sensitivity, directional sensitivity, and

fast time response (see Chapter V for more discussions on the choice of
this wire length). The time constant for this wire was calculated to be
iess than one millisecond for constant temperature operations (42). 1In
order to minimize the effects due to the free convection field induced

by the hot-wire, a low wire operating temperature (i.e., a small overheat

ratio) was used.

Hot-Wire Calibration

A TSI* model 1010 conmstant temperature anemometes was used for

generating the hot-wire signals. 1n order to account for the free convec-

tion effects, extensive calibrations were made in which both the wire
ori¢atation and the velocity vector were taken into consideration,
A calibration tunn.. was designed to meet the requirements of

variable flow velocity, orientation, and air temperature. Figure 10

shows a schematic diagram of this tunnel, The tunnel test section was

an encloesed 4" 1.D, alumin-n can, the axis of which could be rotated

through an angle of 180 degrees on a supporting bracket. An air jet

issued from a 1" diameter orifice with a rounded inlet. Six sheets of

*
Thermo-Systems, Inc., 2500 Cleveland Avenue North, St.
Paul, Minnesota 55113,
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épaced 100 x 100 mesh bronze wire strainer cloth were placed upstream of
the orifice to straighten the flow. The hot-wire probe was inserted into
the tunnel through a removable support plug, when the wire was in place
it was about 1/2" downstream of the orifice exit plane. The probe is
shown approximately to scale in Figure 3.

The uniformity of the velocity distribution in the jet was checked
by traversing a 0.2" long hot-wire probe along the jet diameter. The
velocity distribution in the center region of the jet was essentially
uniform. A drop of approximately 1% of the hot-wire bridge voltage output
was observed at 95% radius. With the hot-wire placed in the center of
the. jet during calibration, the total length of the hot-wire was exposed
to a uniform velocity stream,

The velocity at the orifice could be varied from O to 3 ft/sec by a
control valve which was located between the outlet of a pressure regulator
(and the inlet of a Manostat flow meter.” This meter was used for
measuring velocities below 2 ft/sec. A water U-tube manometer was used
for measuring higher velocities. Figure 1l shows the calibration curves
for the flow meter and the U-tube expressed in terms of the orifice exit
velocity at a standard condition (70°F and 30" Hga) versus the meter or
U-tube readings. The temperature of the jet could bc varied thruugh the
use of a 100 watt cartridge type electric heater which could heat the air

up to 160°F at an orifice exit velocity of 2 ft/sec.

*
Manufactured by Manostat Corporation, New York.
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The desired wire operating temperature was determined by comparing

the calibration at several wire temperatures. It was found that operating

the wire at approximately 300°F was quite satisfactory for the present

applications, At this wire temperature, a reasonably good wire sensitivity

could be obtained and the free convection effect was found negligible
for velocities greater than 0.15 ft/sec.

Figure 12 shows a set of hot-wire calibration curves, This set of
curves consists of the calibrations of a horizontal wire at constant
wire operating temperature (~300°F or 4.50 Q wire operating resistance)
but at three different ambient air temperatures. The calibration data
were fitted into the following functional form by the method of least

squares:

£2 = o + ut/? (3-2)

where E is the hot-wire bridge voltage output, W the velocity, and A and
B are constants depending on the ambient temperature through their
dependence on fluid properties. Direct comparison of the data for air
blowing upward and blowing downward shows that the free convection effect
is indeed small for W<0.15 ft/sec.

For small velocities on the order of 0.l5 ft/sec, another set of
calibration curves for the hot-wire was prepared (Figure 13). It is
seen that the velocity vector of a laminar flow can be determined once a
set of two hot-wire outputs (for wire horizontal and vertical) at the

same location is obtained. This set of calibration curves was used only
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for reducing the indraft velocity data for which the flow was essentially
laminar and hence no non-linear averaging process was involved as would
be the situation for turbulent flows.

1t is remarked that for small velocity and laminar flow such as the
indraft velocity measurements, wire orientation effects are important
and therefore were considered in determining the velocity vector. For
the turbulent flow regime of this study however, the wire output is
substantially independent of orientation because of the relatively high
fluctuating velocities.

Further details on hot-wire data taking and the response equation

will be discussed where appropriate in Chapter V.
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1V. TEMPERATURE FI1ELD AND ANALYSIS

The overall temperature field may be divided intc two main regions:
the region very near the plate (within 1/2" of the plate” and the region
above. 1In the region near the plate, a large temperature gradieut
exists. The major portion of the overall temperature drop takes place
in this region. In the region above, both the air temperature and the
temperature gradient are much smaller than those in the near-plate-regionm.
For this reason, the measurements for these regions were taken at separate
times with different thermocouple mounting methods. They will be discussed
under separate headings.

Air temperatures in both of these regions were measured with a No. 34
gage copper~-constantan thermocouple. This thermocouple was calibrated
against a pair of certified Pt and Pt-Rd thermocouples in an oil bath
(see calibration curve in Figure 14). The thermocouple data output was
displayed on a BRUSH continuous chart recorder via the amplifier output
circuit of a Hewlett Packard Type 413A DC null voltmeter. The time
average of the thermocouple outpur (time constant ~ 1 sec) was obtained
by use of a large time constant (~1 minute) integrating circuit similar
to those shown in Figure 15. The temperature at each measured location
was recorded on the chart for a period of two to five minutes and the

steady state thermocouple output was used,
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UEAN TEMPERATURE FIELD ABOVE THE PLATZ

The measn temperature field was cg:sur2d simmlcaneously with the
velocity field. The thermecouple was mounted ou rthe hot-wire probe
(Figure 16) and traversed with it, Siace temperature is a scilar gquasnliity
and the response of a thermocoupie is nearly iinear with temperature io
the range of interesz, the temperature field zeasuremeatr is 2 relativ_ iy
simple task compacrad with that of the velocity field. Several runs were
made for each of the two mean plate temperaturss investigated.

In order to determine the symmetry of the temperature field, measure-
ments were made at three locations (on the same radius but spaced at 90°
apart). Data showed that discrepancies aumong -hese three readings were
generally very smali. The largest {observec only clcasicaally) were
less than 3% of ‘he average reading. The discrepancy was believed to be
mainly due to the iarge pcriod .2riation of the air temperature in the
laboratory room and to a less extent Gue to plume leaning. Shadow viewin
showed that the plume was almost always strigit up even when the labora-
tory door was wide open, and thatr the auration of occasional plume leaning
was too short to affect the mean tempe: ature readings significantly. In
view of the data scatter (> = SOF) shown in Figures 17, 18 and 19,
asymmetry of the data was considered to be reiatively insignificanc.

For each plate temperature the centerline temperature profile and
three horizontal temperature profiles were obtained (Y = 3", &", 12"
abov: the plate). Figure 17 shows che centerline <emperature profiles

for toth plare timperatures investigated. TFigures 18 and 19 show the




(9%
W

korizoaral texperature profiles ceasured for the rtwo plate temperatures.

In cthese figures, each point represenzs the average of six to ten mean
texperature re2acdings. A line is drawn through esch average temperature

to indicate the error of £ one standard deviation. It iz interesting teo
note that the tecperature drops Off almost iinearly with radfus ia the
region near the centerline.

Pigures 18 and 19 show that lower average air temperature and

relatively flat horizontal temperarure profiles are asscociated with lover

lare temperature. Thnese fiat average remperature profiles imply a2
2 P p

larger plume width in agreemenr with Morton’s analysis (38) that the
width of a weakly buoyant plume 1s larger chan that of a strongly buovent
plume,

Secause of the limited amount of data, quantitative determination

of plume widch was not practical.

MEAN TEMPERATURE NEAR THe PLATE

The temperatures near the piate surfzce were measured with the same

chermocouple {34 gauge Cu-constantan wire) as was used for the tempera-

ture field probing; however, a different mounting method was employed

(Figure 20). Teoperatures were measured at three radial locations (X =

0", 6", 12") for each vertical pesition Y. Because of the large tempera-

ture gradient existing near cthe plate, a small increment in elevation Y

was necessafy. This smalil increment was obtained through the use of a

micrometer attached to one end of the horizontal bar of the traversing

mechanism. By advancing the micrometer screw against a hard stationary

ey L
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surface, the whole tzaversing mechanism could be raised to any desired
height with respect to the piatz in increments of 0.GOl".

Pigures 21 and 22 show the temperature distribution in the region
near the plate surface for rhe two plate temperatures investigated
(s, = 520°F and 410°F). These temperatures were cbtained by correcting
the raw data for losses due to radiation and conduction (see Appendix C
for derails of calculations). One may observe two interesting facts from
these temperature data. The major portion of the overail temperature
drop takes place within approximately 0.1" of the plare. This region is
thicker for the higher plate temperature.

The surface temperature gradient is larger for the higher plate
remperature and, because of the more effective cocling near the plate
edge, this temperature gradient increases with the radius. This cooling
effect is alsc reflecrzed in the plate radial temperature distribution as
shown in Figure 7.

The temperatures within 0.1" of rhe plate were calculated based on
the average heat flux and molecular conduction only (solid lines in
Figures 21 and 22). These calculacions show that, very close to the
plate surface, the measured temperatures are nearly the same as those
based on conduction calculations. This region is within approximately

0.02" of the plate surface. We will follow Townsend (3) and call this

regiorn the conduction layer.
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THERMAL DIFFUSIVITY

2B ek re

Some estimates on the turbulent transport coefficient based on the

3,

available temperature data are made here. Adopting the thermal diffusivity

I
concept, the steady state emergy equation may be written as follows: g 3
i1
- 2 : g
. = Vo g
vV .vs EH véy + V¢H v i %

o . ='§-vo ; Ve v i

? T8

<
where V, 8,

QH’ and vV are, respectively, the velocity vector, mean

temperature, thermal diffusivity and gradient operator. € is calculated

PET IR TR L

using the following procedure: We proceed arbitrarily to neglect the

spatial variation of Veq'vo . This gives:

I R

iy (4-1)

The value of € calculated from Equation (4-1) are then used to estimate

the magnitude of the neglected term Vey Ve to see if the procedure is

justified.

N 3 e
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Based on the mean temperature data (Figure 18) the values of Vv§

and vzo were obtained

cedalen

-
graphically., Using the data of V from Chapter V,

the values of €y were calculated from Equation (4-1) for the case §, =

p
V26 and €4 for several locations in the flow field

Ry

520°F. The values of

are given in Table 3.

Ca e mar o th b

The estimates in Table 3 show that the values of €, are nearly

constant in the major portion of the primary flow region. ¢; is large :

near the plate and is relatively small at the location (6,3) which is
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near tne boundary of the primary flow region. The magnitudes of the
neglected term Vey-V# are estimated and are also give in Table 3. It is
seen chat they are much smaller than the typical values of the term

?-vo. Neglectiag ongH-Wmakes the values of €, somewhat too high.

Table 3. Thermal diffusivity estimates (§, = 520°F).

Location Veloeity 2
in. fps ] -V's .ve Ve, -v8 ¢y

X | Y U] v °p op/fe? | OF/sec | °F/sec | £rZ/sec
0 {1.5 01 .93 (| 162.5 1400 93 11 .066
0 0 11.35 § 152 1673 88 5 .053
0 6 0 11.90 | 140 1700 68 .7 .04
0 i2 0 {2.22 | 125.5 1424 52 .1 .037
3 3 1 .47 | .78 | 137 504 26.2 2.8 .052
3 6 | .13 {1.06 | 120 656 28.4 1.4 .043
6 3 | .41 1 .45 | 115.3 486 4.7 .1 .01
6 6 .26 .77 98.7 142 5.3 .3 .037




V. RESULTS AND ANALYSIS OF HOT-WIRE DATA

INTRODUCTION

The experimental measurements of the fiow above a heated horizoatail

- e AR A By

circular plate are described here. The mean velocities and turbulence
kinetic energies are of primary interest. Using the turbulence measure-
ments, the eddy diffusivity will be estimated,

As will be shown, the mean flow velocities are small #~1 ft/sec) and

the turbulence velocities are on the same order of magnitude as the mean.

Due to the large fluctuations, coaveatiocal experimental methods and ¢

v

attendant mathematical simplifications for turbulence measurements fail.

No data directly relevant to the present investigation have been published.

Ve oL R 1

In any parcicular geometric space, the desired flow properties are

all determined by the probability demsity fuactior. over four-dimensional

I~

velocity-temperature space. The data reduction procedurc is based on :
the idea that the essential features of this probability deasity fuanction
are determined by the one-point probabilicy density distribution of hot-
wire output voltage with wire orientation as a parameter. This informa-
tion is approximated by a set of averages of hot-wire output repeated at
several orientations.
A constant temperature hot-wir: anemometer was used for this experi-
ment. The one-point averaged values of the hot-wire output and selected
low-order moments were obtained at selccied wire orientations, The

quantities of interest were then inferred from knowledge of these moments

Teotain by sl
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anda & set of numerically simulated hot-wire data. In the following
section, the hot-wire data from direct experimental measurements will
be summarized ard a numerical simulation of the turbulence based on an
idealized computation model will be described. A data reduction proce-
dure using the above results is then discussed and the reduced data
presented., Finally, the justification of the numerical model and the

assumptions incorporated in it will be given.

HOT-WIRE DATA SUMMARY

Instrumentation

The complete instrumentation setup is showm in Figure 15. It
consists primarily of a constant temperature hot-wire anemometer, two
linearizers, the integrating circuits and the recording devices. One-
point time averages of the guantities shown in Figure 15 (i.e., E, ii
EE, etc) are the basic data to be taken.

A4 0.001" diameter x 0.5" long bare platinum wire was chosen as the

sensing element, Shadow observaticns showed that the eddy size was on

the order of 1", therefore, a 1/2" long wire would be a reasonable choice,

In order to determine the length effect on the resolution of turbulence
sensing, a 0.2" long wire was also made. These two wires were operated
at the same wire temperature (approximately 300°F) and were placed in
the flow field 6' above the plate. The hot-wire cutputs were recorded
on an AMPEX Model FR~1200 tape recorder at a rucording speed of 1-7/8

inches per second (ips). Comparisons were nade by playing the tapes

N e ——
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back at 60 ips and analyzed with a Hewlet: Packard Model 302A wave
analyzer. As shown in Figure 23, there was no significant difference
berween the two wire outputs in either frequency or amplitude of the
fluctuations. It was therefore ccncluded that for this investigation
wire length within the range studied was not an important parameter.

The lcnger wire (0.5" long) was used for all measurements because
of the desired larger voltage output or better sensitivity.

Characteristic Quantities of the Turbulence

Figure 24™ shows some typical hot-wire output traces for both
horizontal and vertical orientation of the wire at various distances
above the center of the plate. Figure 25% shows hot-wire output traces
for a horizontal wire at five radial locations 6'" above the plate. This
figure shows that the turbulence degenerates with increasing radius.
At a radius of 9" the traces indicate intermittent turbulence. At 6"
radius, the large amplitude and the erratic excursion of the traces suggest
that the hot-wire is located approximately on the boundary of the primary
flow region. Both Figures 24 and 25 show that the amplitude of the
fluctuations are on the order of one volt. This curresponds to velocity

fluctuations on the order of 1 fr/sec (Figure 13), which is of the same

order of magnitude as the mean flow velocity.

*Since the zero velocity position of these rraces depends on the
local temperatures which vary from location ts location, it is
impractical to mark these traces with the corresponding velocities.
Therefore, by themselves these hot-wire traces (Figures 24 and 25)
demonstrate only the qualitative nature of the turbulence,

SRR i e
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The use of a wave analyzer was criginally intended to obtain the
characteristic frequency of the turbulence. Analysis of the data showed
that the main contribution of the frequency was in the range below 10 Hz.
At frequencies below 25 Hz the amplitude dropped off rapidly to less
than cne percent of the value at 1 Hz and became negligibly small at
higher frequencies (e.g., Figure 23). Due to the poor low frequency
capability, the wave analyzer could not be used to obtain a meaningful
time scale for the turbulence. Therefore, the autocorrelation function
of the recorded turbulence data was obtained using a PAR Model 101
correlation function computer (manufactured by Princeton Applied Research
Corporation).

The autocorrelation function of the hot-wire bridge voltage output

E is defined as:

T
o(r) = 1im/ E(t) E(t + r)dt
T+w =T

where ¢ is a delay time., Figure 26 shows the autocorrslation function
of the hot-wire bridge voltage output for a few centerline locations.
Since ¥(2) is a pure function of delay time, the integral time scale of
the turbulence can be defined as the area under the autocorrelation
function curve (42). As shown in the tabulation in this figure, the
integrated time is on the order of 0.1 second. In other words, the
characteristic frequency of the turbulence in the flow field of the
present experiment is low (on the order of 10 Hz) which is well within

the capability of the electronic instruments used.
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We conclude that the turbulence in the primary flow region is

characterized by low frequency (~10 Hz) and large amplitude (~1 ft/sec)

fluctuations.

Hot-Wire Response Equation

Since the cooling effect on a hot-wire depends primarily on the
velocity component W, perpendicular to the wire and to much less extent
on the parallel component W” , it is useful to define an effective

instantaneous velcoity W (44):

whe s k2w"2 (5-1)

where k% is an experimental constant. For a wire of length-to-diameter
ratio greater than 600, k2 is essentially zero (44). Equation (5-1) will
be used to obtain the value of W in Equation (3-2). Rearranging

Equation (3-2), the following relations are obtained:

- A _ 172
B
2 2
g2 - a)? _
(B =W (5-2)
.EE.—:—-_A.A:WZ
B

In these equations the ambient tempterature dependent quantities A and
B are lumped on the left hand side., We will assume and later verify on
the basis of computer simulated output calculations that the following

ratios are substantially independent of the fluctuations in A and B.

iz EPORPONS
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By = W/ (W gm0 (5-3)

R, = We/(WD), _,

where an over bar refers to the corresponding time-averaged value. WRO,
&1’ &2 are primarily functions of the normalized turbulence velocity and
the wire orientation angle ¢.

Data in Primary Flow Region

Eight locations in the primary flow region were probed. The data
consisted of the time-averaged values (averaging time ~2-5 minutes) of
E, E2, W and W? for ¢, from -90° to +90° at 15° intervals. To facilitate
the data taking, the temperature dependent quantity A in Equations (5-2)
was replaced by a fixed value A' nearly equal to A. The data thus
obtained were used to compute the correct values of a.and aét The

conversion formulas are given below (see Appendix L for details):

— 172 2

=¢; W' - 2CWl/2 - ¢,

=]

(5-4)
W2 = 0y 20'2 - BCyH(C, + W2y 4 4cuL/2(aWLI2? - ¢)2) - cyf

where G, = B™2, Cp = (A-a")/B, W' = (E2-a")2, w'? = (52-a")% |

For all the data taken, A' was set equal to 25. At this A' setting,
the whole data taking system (Figure 15) was calibrated agaiast a known
d.c. plus a.c¢. voltage input. The calibrations of Ez, W', W'2 were

plotted versus their corresponding line outputs on the recorder and are

shown in Figure 27.
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Since A' was taken as a constant, we are essentially treating A
and B as constants evaluated at the average ambient temperature, The
maximum error introduced due to this assumption may be estimated from
the dependences of A and B on fluid properties (p.79, reference 42) and
can be shown to be on the order of 17%. As a check the effects of the
fluctuations of A and B due to temperature fluctuations is evaluated by
numerical simulations as will be described later.

The hot-wire data obtained are shown in Figure 28. The ratios
defined in Equations (5-3) at ¢y = 90° may be used to describe the
shape of these curves in Figure 28. These '"shape parameters" and the
relevant hot-wire data are summarized in Table 4., A comparison between
W and oy shows clearly that the turbulence intensity is indeed much
larger than that reported for typical low turbulence measurements (e.g.,
references 42, 45),
Indraft Data

Two indraft profiles at the edge of the plate were measured. These
measurements were all made in the secondary flow region, a laminar flow
region. Therefore, direct measurement using only the hot-wire bridge
veltage output E was possible. Since the velocity in this region was
small, a relatively high wire operating temperature was desirable. The
wire was operated at approximately 400°F. A set of calibration curves
was obtained for this purpose (Figure 13). Figure 13 shows that the
velocity vector at any location can be determined once the hot-wire bridge

voltage outputs for ¢ = 0° and 90° (Eh and E, respectively are obtained.
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The results are shown in Figure 29. Clearly, the largest indraft

occurs near the ground level.

NUMERICAL SIMULATION OF HOT-WIRE DATA

Described here is an idealized numerical model to generate simulaged

hot-wire data for a given set of flow parameters. The results thus

obtained will be used to interpret data from experimental measurements.

The Numerical Model

Consider the mean velocity vector Vm’ the fluctuating velocities

(u, v, w) and the hot-wire described in the following coordinate system:

A y (axial)

(——» x (radial)

where v is the random fluctuating velocity component parallel to Vm’ w
is the random fluctuating velocity component in the horizontal direction
normal to v, and u is the random fluctuating velocity component in the
direction normal to both v and w such that (u, v, w) form a right-handed

triad. The direction cosines of V,, u, v, w and the wire in the (x, y,

z) coordinate system are given below:
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Dir Wire

T X T 7_ ’v siny, cos o, co‘w oaiw
y sing, cosg,, 0 sind,
z -cos¢v cosy, sin;v cosav sinsv ~cosd, sinaw

Denoting the component of u, 'Vm+v, and w in the direction of the wire,
respectively, by El’ E;, and E5 the above tabulation gives, after a

little manipulation:

El = siz{p,=e,) + sin¢v cose,, [1nsin(0w+0v)]
E, = cose, cos(p+a) (5-5)
Ey = °°8“w”\1) - cos$, cos¢, [l-sin(ow-re,y)]

Pinally, for given values of Vm, (u, v, w):

2 T, 2
Wy = (4B + v+ VE, + wE3]

(5-6)

2 2

W‘L=u 2 2

2
+(v+Vm) + W o Wy

These expressions will be used in Equations (5-1) and (5«2) to generace
the desired hot-wire output.
For convenience of specification of the fluctvations, the following

normalized variables are defined:

u v W, o~ 8 .
Ve V=g V=g, T~ 5; (5-7)

where

02=u2, av2=v2, o,znwz, 0‘2"0’2 (5-8)
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are the variance of the fluctuations, The correlation coefficients of

turbulence may be written in terms of the above quantities:

L Snar—_

uv ~ u 0‘ L)
K _ = =V, K = =u§ , atc. {5~9)
uv °h°b ud quob

The values of these correlation coefficients may be positive or nega-
tive but must not exceed unity in magnitude,

Substituting Equations{5-1), (5-6) and (5-7) into (3~2) and making
modifications for studying the effects of temperature dependent fluctua-

tions of A and B, we have:

g2 = 1+ 30‘7) A+ (1+ moa'i’) val/z l: %) 2+ k2 (!‘% 2] H (5-10)
For computations, we can without loss of generality take « = -1 and
Vo = 1. The factor Y accounts for the fact that A and B do not have
the same dependence on temperature,

The results, with combinations of the ¢'s and K's as defined in
Equations (5-8) and (5-9), will be used for this study. The flow
variables characterizing the turbulence (u, v, w, ¢') define actually
random variables, sequences of which can be simulated with the numbers
obtained from a random number generator (see details in Appendix E),
given the values of o¢'s and K's., After making some idealizations
described below, the desired hot-wire response and its moments can be

readily computed as functions of the flow variables from the above

equations.
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Sope Numerical Results

~ Calculatioiis were mede for four types of probability density distri-
butiona. Soie typical results are presented in Tables 5 and 6. It is
.geefv that fairly good results in both reproducing input data and errors
:can bé obtainéd from calculations using 400 samples. The effects of
the type of distribution function appear minor.

‘Figures 30 and 31 show aone simulated hot-wire data corresponding
to the experimental results given in Figure 28, Resemblance in basic
shape of the data curves in Figures 28 and 30 and 31 is clearly shown.

For the hot-wire used in this experiment, the value of k2 was
found to be essentially equal to zero. For data reduction, the shape
paiiﬁgters and the effective flow velocity for the case: k% = 0, zeré
cbfrelafion and temperature fluctuations, Gaussian distribution, are

presented in Figure 32.

D@TA REDUC?ION

Data reduction utilizes the results of simulated hot-wire data
based on the following idealizations: k2 = 0, no correlations, no
temperature fluctuations, and Gaussian distribution of fluctuation of
each velocity component, The justification ¢f these assumptions will
be discussed under the next heading.

The data reduction procedure is described below with an actual

example.
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Center line Locations

On the centerline, symmetry requires that s
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u

= o, and U = 0, so

the shape parameters plotted In Figure 32 are directly applicable,

Consider the data for X = 0, Y = 3":

Shape Parameter Range of oy/Vp Common Range
of Actual Data from Figure 32 of 9,/Vy
) 0.775 0.52-0.55 (.52-0.55
0.52-0.55
‘ll 0.608 0.51-0.56

The value of ¢, will be chosen (within the above common range) such

that the values of (o, = cv)/Vm obtained from (e,/Vy, ) and

(6,/Vp, &) are the same, this being a requirement. In this manner,

the value of ¢,/V, and (o, - oy) /V, are found equal to 0.52 and 0,

respectively.

From Figure 32 for o,/Vy ».0.52 and Goy1-to,)/Vy = 0.
W=1.,18 vy
The hot-wire data in Figure 28 shows that:

W =1.58 fps

Finally, Vp = 1.35 fps

oy =0y = o, = 0.7 fps

Off-Centerline Locations.

For off-centerline locations, V_ is making an angle ¢, vith the

m

centerline., This angle is s~t approximately equal to the phase

WS, . e,

LRRTSre TiN
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shift of the peak value of the hot-wire data. Using the peak values

as a basis,ilo,tll, and iﬁva are then obtained. The rest of the

data reduction is carried out in the same manner as described in (1).

A summary of the reduced data is given in Table 7. It is seen

that the turbulence velocities are indeed large (of.comparable magnitude
as the mean flow velocity), and that the turbulence decreases, as it
must, as the distance from the plate increases. It is remarked that in
the data reduction procedure described above the effects of local free
convection due to the hot-wire has been ignored, i.e,, the hot-wire
output is assumed unaffected by the wire orientation with respect to
the mean flow. In view of the large turbulence velocities, this appears
to be justified (sec Chapter III).

Table 7. Summary of hot-wire velocity results (& = 520°F).

—

"

X Y ‘v -U v %, o, T, SecC. cuz'
in. |in. fdeg. | fps | fps | fps | fps [ (Fig. 26) |ft?/sec
0 [1.5 0 0 {0.93 (0.7 0.7 0.114 0.056
0 3 0 0 |1.35)0.7 10,7 0.092 0.045
0 6 0 0 1.9 }{0.57 |0.57 0.181 0.059
0 12 0 0 |2.22{0.47 | 0.47 0.270 0.06
3 34 31 |]0.4710.78}0.5210.76 o= -

3 6 7 {1 0.1311.06]0.346 }0.34 we- -

6 39 42 } 0.45]10.5010.34 |0.17 - -

6 6l 20 {1 0.2610.77 | 0.25 [0.33 - cu-

If we assume that the turbulence is characterized by o, and the time

obtained from the autocorrelation function, then ahzrcan be used to

estimate the order of magnitude of the eddy diffusivity. Table 7 shows
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that the values thus calculated are consistent with the estimates made

based primarily on temperature data (Table 3),

JUSTIFICATIONS

Simulated hot-wire data have been obtained for a variety of cases
based on different assumptions such as: type of random number distribu-
tion function, correlation coefficients, temperatur: fluctuations, and
the values of A and B. The results show that the computed values of §,
and &1 are somewhat insensitive to the assumptions used and the values
of ’Rz and Ti/vm show more pronocunced dependence on assumptions.

Figure 33 shows comparisons of some of the typical results with
the largest differences (i.e.,‘e.z and W/Vm). Clearly, relatively large
differences (although small by themselves) may be caused by the type of
random number distribution functions used and che results are relatively
insensitive to other assumptions. In the data reduction procedure, only
the results of &), ®; and W/V, are used. In view of their insensitivity
to the assumptions, this procedure is reasonably general and the expected
error involved due to assumptions may be best shown by that of V.

In order to show quantitatively the effects of assumptions on the
reduced data, the procedure for the actual data reduction was repeated
for a number of cases ugsing simulated hot-wire data based on different
assumptions, Relative errors are defined as the percentage deviation of
the cu.”-ulated results from their corresponding values tabulated ‘i.n

Table 7. Results show that the relative errors of the reduced turbulence

e P e e caan AT
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velocities 7.5 % and the mean flow velocity Vﬁ are of comparable
magnitudes. This is expected because of the dominant dependence of
errors on ﬁ?vm described above.

Table 8 shows the relative errors of Vo and one case of ¢,. It can
be seen that the possible error in data reducticn due te the various
assumptions used is on the ordec of 10%. The mean flow direction is
unaffected by the assumptions in any way because it is determined by
the location of the peak value of the actual hot-wire data. The error

of the mean flow direction is mechanical which is less than #2°,
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VI. NUMERICAL MODEL

The purpose of this chapter is to present a numerical method for

predicting the fiow field mear the plate.

MATHEMATICAL FORMULATION

In the cylindrical coordinate system sketched below,

Y.V

D :;::=h3 —ee X , U

the flow field to be described is that generated in the half space

y 2 0 by a heat source of diameter D at y = 0, An order of magnitude
analysis shows that the viscous dissipation (Eckert number ~10°8 for

our problem) and the flow work terms in the energy equation are negligible
(Chapter 14, Reference 45). In the primary flow region, the region in
which there is a dominant upward moving stream of eddies, the density

(or absolute temperature) variations are small compared with the ambient
density, therefore, the familiar Boussinesq approximations are used (l).
At present, the physical behavior of the flow field is not well-under-
stood, nor have there been any proposed turbulent transport formulations

in the literature. The constant eddy diffusivity model {s the simplest
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plaus./»le turbulent transport model and is chosen for the calculations
descriied below. After introducing these simplifications, and a charac-
teristic velocity Ucz = gﬁAO.ED, the resulting equations for the mean flow
field become the same as those for laminar free convection (13, 36).

These differential equations in dimensionless form are given below:

Continuity
o) 4 ) (6-1)
Monentum
6

u du P 1
Frugrev- -‘af*'V&?;
1

) of
T

g—t--f-u%x!'-t-vg; -%}%+ é‘f«r;‘l- +ayv + T (6-3)
Energy
T aT 1 fe?r  19r  9%r
Frufirvg- mm*:&*m) (6-4)

where x, y, u, v, p, T, Grp, Pr and t are, respectively, the dimensionless
radial and axial coordinate (x = X/D, y = Y/D), dimensionless x and y
component of the mean flow velocity (u = U/Uc, v = V/UC), pressure
coefficient (p = (P‘Pgo)/’eoucz)» dimensionless temperature (T = (O-Q/AOT),
turbulent Grashof number (GrT = gB Aﬂl;D‘s/e%{), turbulent Prandtl number

(P, = GMIGH), and dimensionless time (t = rU_/D). 80, €y and €. are,

H
respectively, the equivalent temperature rise, momentum and thermal
dirfusivities for turbulent flow.

The physical boundary conditions are: Zero disturbance at large

distance from the heat source and non-slip and thermally insulated
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conditions at the ground surface (y = 0), and T = 1 at the source.

T « i

METHOD OF SOLUTION

Defining a stream function § such that:

- 35
Xu 3y’

B (6=5)
= =XV = %%

autonatically satiafias Equation (6-1). Subtracting the derivative of

Equation (6-3) with respect to x from the derivative of Equation (6-2)

with respect to y and making use of Equation (6-1) yields:

2
%+u%+v%-%%+ﬁ[ﬁ+%§+é§] (6-6)

The new quantity Z, defined as:

du @év
-xz L g - &‘ (6-7)
E in Equation (6-6) is called the modified vorticity function,

Substituting Equation (6-5) into Equation (6-7) a relation between

the stream function and the modified vorticity function is obtained:

- arm——" o .

. R

; The set of auxiliary conditions for the present problem becomes:

% (@) t<0: umve=T=S=Z=0fory20. )
1 (b) €2 0:
L} ig u, v, T, S, Z = 0 at large distances from the source. \ (6-9)
1 y = 0:
1 Tl i S D/2
| o

= 0 Xt >D/2
9

i

1
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u=v=8=0 (6-9)

z=§,—2(§. J

The set of equations to be solved consists of (6-4), (6-6), (6-8) and
(6-5). These equations were solved numerically.

We seek steady state solutions for the problem posed above. In
general, two basically different numerical approaches may be considered:
the time-independent and the time-dependent formulations and solutions.
The former approach requires the simultaneous solution of the steady
state version of all the governing equations. This requires iterative
procedure which may be complex and time-consuming (13, 35, 36). The
latter approach is to introduce a disturbance (i.e., for our problem,
temperature at the source) into the initially undisturbed region of
interest at t 2 0. The subsequent changes in the region of interest
as the time increases will be described by the governing equations.

The steady state solution, if any, will be that obtained at large time.

Various types of numberical flow calculations (for example,
references 9, 34, 43, 46, 47, 48, 49, etc.) have shown that using a
time-dependent numerical scheme to obtain a steady state solution is

convenient. The time-dependent approach was used here,
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FINITE DIFFERENCE SCHEME

Grid System

For an axially symmetric problem, calculations need be performed

only over a radial plane containing the symmetry axis. The square mesh

grid system for such numerical computation is described below:

} = jmax

.
axis of symmetry
(or centerline)
upper boundary
__ -—— e N SRS CEMED  GEeS - s -1
Ax = Ay |
"‘ Ay I outer
+_ "'boundary
~L —?- (1,3+1) |
I
win® I R W ) (i+1,3) |
—4 |
e »3=1) |
source l
‘) qg:ound surface |
WWW X,u
(radial
i1=1 i=n i = imax axis)

Henceforth, two subscripts (i,j) will be attached to each dependent

variable (when necessary) for identification purposes. Thus ij refers

to a dimensionless temperature on the line x = 0,

Por identifying the particular size of array of nodal points and

the relative size of the source, the following symbol will be used in

the future discussions:
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"imax x jwax, lem"
Here the first part specifies the array size and the second part

means that the source occupies the region from i = 1 to { = m, or source
size = (m-1)ax.

Difference Forms

The derivatives in the differential equations to be solved will all
be approximated by their difference analogs. Three difference forms
(forward, backward, and central) will be usedcforv the first derivatives
and a single form will be used for the second derivatives. To illustrate,

the space derivative for amny Iluanction S(x, y, t) are given below:

(a) First derivatives

Forward difference

as\ _ Sit1,4 - S1,4 fas) | Si g+ - 544
& i,j Ax y i,j Ay

Backward difference

(as) By~ Bio1y (as) _ 51,4 785,441
L3 g i,]

X Ax

Central difference

os)  _ Sit1,j - Si-1,5  [9s] L Sijtl - Si j-1
x|, 248x > oy 24y
i,3 i,]

{b) Second derivatives

a%s| _Sisl,q - 2S5+ Sie1i [a%s)  SiigHl - 2854+ Siy-1
5;2. i j sz ! y i J Ay2 ’
’ b
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Stability Criterion and the Difference Equations

Equations (6-4), (6-6), (6-8), and (6-5) are replaced by their
difference analogs. Wilkes (9) has investigated this system of equations
extensively for a free convection problem in a rectangular cavity with
heated vertical walls. He used a differencing scheme (50) such that,
for the convective terms on the left hand side of Equations (6-4) and
(6-6), the forward difference form was used when the coefficient velocity
was negative, and the backward difference form was used when the
coefficient velocity was positive. The central difference form was used

for all other terms. Based on a linear Fourier analysis the following

stability criterion may be derived:

a S [J__“:xl + J——LVZ‘;" +

-1
2 1 1
m (m + m)] (6-10)

Taking u as negative and v as positive, for illustrative purposes, the

difference forms of Equations (6-4) and (6-6) are written as follows:

4 R £ VS, Ml 9% RO 08 Hller 991
Nt YA 5 i, ax 1,3 8y
’

R S 5 W My 08 T U O 5 U Bl £

P;iﬁrr axl 2xAx (6-11)

TR Mty V8 Bl W9 15
AyZ
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Z -Z
az - . i+l,4 i,i
(T)i,j ui,j Ax

Tivr, g = Tia1,d i

+ +
2xAx rT

z -Z,
i+1, 1 i1, +

+ 3
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2y .4 = 2i,4-1

" Vi,3 Ay

zi+lnj - 2211_1 + Zi"l;j

2y, 441 = 22y 4 * 2y 40

2xAx

Ayl

Equation (6-8) may be written first as follows:

Si+1,j =~ %8

1,3 ¥ 55-1,9  Simn g " Sia g

Ax?®

5

R 28, 4 * 8y ..

2x 5%

1 2

By’
In the above equation, Sy ; was
?
an over-relaxation scheme (51),
relaxation parameter W, and x =
. (x6x)? z.
i,j Ax2 i
211+ N
ay?

1 1 n
L+ 5] Si-1,5 t

+

=-x°2
Rt B

solved by an iterative procedure using

Rearranging and introducing the over-

(i-1)ax, we have:

1 n
g7 b TEeD] Si,g
(6-13)
2
Ax n n n
-;;2- (Si,j+1 + Si,j-l)]+ (1-W) Si,j

Here, the left hand side is the value of S¢ 3 from the most recent
2

iteration Dbased on the established values of S? .» etc, from the
H

previous jiterationm on the right

(6-5):

hand side. Finally, from equation

*:
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Sy T8y 441

%i,3 24y
(6-14)
I T T e
i,3 2x4x

Boundary Conditions

The governing differential equations for this problem are of the
elliptic type; the specification of conditions on all the boundaries
is required. We define a natural boundary as one at which appropriate
boundary conditions are obvious. The only natural and finite boundaries
in this problem are the ground surface and the axis of symmetry. The
others are at infinity. For numerical calculations, one is restricted
to perform calculations in a finite domain of a feasible number of nodal
points. To meet this restriction one may either map the semi-infinite
space y 2 0, into a region defined between 0 and 1 or assume some
approximate artificial boundaries. Mathematically it is possible to
map the infinite domain into a finite one by a transformation such as

the following pair:

e..._.(.:.l..f_. xmek et (0 SyxSw, 05 ¢ S1
1+C x’ cpl1-¢ = ! :
cz y Ly . (6=15)
” —— e E——— ¢ ogys“’ og’)sl.

"T¥cy* YT

where c1 and C2 are conatants which determine respectively the manner

in which the x~ and y-coordinate are to be shrunk.
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Some attempts were made to use the transformed coordinate system as
described above, It was found that although the calculation seemed to
convefge reasonably well and produce stationary results near the source,
it exhibited large oscillations at large distances from the source,

This is because of the singular behavior near £ = 1 and 7 = 1 and the
associated unusually large truncation error due to the transformation

in these regions. Figure 34 is a plot of some numerical results using
the mapped coordinates for the case of Grp = 7.4 x 107 for the different
stages of calculations. Although the Grashof number used in this
example is too large to be realistic in the physical sense, the plotted
results do show the large oscillations near infinity. Furthermore, it
took about 507 more computing time than when an ordinary physical
coordinate system was used., For these reasons the physical coordinate
system was used and non-natural boundaries defined where necessary.

Some reasonable boundary conditions on these non-natural boundaries

are constructed. Boundary conditions, with discussions where appropriate

are given below:

(a) Source Plane (j=1, y=0)

T. .=1 for x £D/2
i,l
&%4 = 0 for x > D/2. Due to the inflow of air at ambient
i,1

temperature, this condition is nearly equivalent to T = 0.

U1 V31 =0

Sbutds, o

o mwaTEwe o
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Since no flow is crossing the source plane, y = 0 is a stream surface,

Thus we can set:

Si’1 =0 ,
By Equation (6-8):
2 o[ s
i,1 xZ ayZ 1,1
Expand S near y = 0,
a2 [ 3 3)
A S AyJ 1a°s
S, , +A( +
i,2 mi,l 6 3.3-’.:;1,1

o B, P
®1,3% 81,1 +2y‘)11+ T %51,1

Noting that:
si,l 0 and (xu) 1 ( )

34}
and eliminating (g;% from the above two expansions, we get:
i,1

s\ 8510 -8i3
9|, | 28y?

Finally,

z 88; 2 - $i,3
= -—..’.-—-.—-—-l.—

This expression (3) is accurate to the second order of Ay. This high
accuracy is desivable in order to minimize the inaccuracy in u and v
as calculated through Equation (6-5).

(b) Axis of Symmetry (i=1l, x=0)

Based on the symmetry of the flow field and the requirement

that field variables and their gradients be everywiere continuous,
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the following conditions prevail:

sy (B) -(B), o
l)j 1DJ l’j lnj
From Equation (6-7):

2
= —]'-—-av = a A4
Zl,j (x ax)l,j (5;7>1,j by 1l'Hospital's rule.

(c) Upper Boundary (j=jmgx, y=ym%x)

Above the source, the variation of the flow variables decreases
as the distance increases. Therefore, at some distance y_,, . above the
source, we choose:

(T, S, 2),

i, jmax = (T,

$» 2), jmax-1 *

As y increases, the flow enters into the convection plume region where
the governing differential equations are of the parabolic type (4,7,38,52).
Since the downstream conditions in a parabolic system only weakly affect
the upstream region where the flow is described by elliptic type
differential equations, we assume that this specification is satisfactory
for the present problem. The validity of these conditions as indicated
by numerical experiments will be discussed at a later time.

(d) Quter Boundary (i=imax, x=x

max)

Experience and analysis show that the influence of a heat
source on the ambient region diminishes ra»idly in an upstream direction.
Therefore, for some suitably chosen value of imax, the location of the
outer boundary across which the cold ambient air flows in, one may

assign:
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T 0 L]

imax, ] =
This condition simply means that the temperature reaches the ambient
value on the outer boundary.

We have so far specified zero temperature gradients on the other
three boundaries (except at the source). In a steady flow problem, the
velocity field is established and the energy equation becomes linear.
The specification of zero temperature gradient on this boundary would
result in a trivial solution of T = 1 everywhere inside the boundaries.
Furthermore, the temperature on the outer boundary can be higher than
that of the ambient only by heat diffusion in an upstream direction.

The characteristic diffusion length is proportional to %%?)1/2 . For
our problem, this diffusion length is on the order of 10~ foot.
Therefore, at a distance not far from the plate, the air temperature
would be very near the ambient value. Thus the choice of Timnx,j = 0
at sufficiently large value of imax (e.g., 1.5D) is well justified.

For velocity conditions at this boundary, we choose:

Simax,j = Simax-l,j

0, (J+#0).

thxd =
The first of these implies v = 0 and xu = constant from Equations (6-5)
and (6-1). Since the largest velocity change takes place within the
boundary layer near the ground surface, the remaining portion of the
secondary flow region at this boundary may be considered approximately

irrotational. Experience in numerical calculations shows that the
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specification of 2 is insensitive to the solutioa.

imax, j
Following the basic scheme discussed in (a) above, the boundary

values for the condition of vanishing first derivative were established

Llshants

by 3-point extrapolation scheme (53)., Considering T, 3 for example, a
’

Taylo~ series expansion gives:

2 |r ax3 |93
T, .~T, .+ & EZE) + & &;:Z) L
2,; = T,j (ax 2 vy 6 g
- or)  ,em? [2r) | sad [or
T35 = T3+ % (o *72 \%—x’zl 6 (o),

1,3 1,3 ’

2
4 28x7

2

T %7 278x3 33T
'1‘4’j =3 Tl,j + 3Ax (& m Ly + -~ (%)1’3

Since Gg%)l . =0, the above equations may be solved simultaneously
]

1]

to give: H

T, . = (18T2’

« 9T, . + 2T, .)/1l1.
1,j 3, 4».])/

]

Since the profiles of interest have no rapid changes in slope along .

(1,j), this method was found to be very satisfactory. Similarly,

(3%)1 _ may be obtained for specifying Zl,j' Since v is a quantity
deriveéjfrom the stream function S which in turn is obtained by solving
Equation (6-8) from the known values of Z, it is more accurate to
compute Zl,j directly by extrapolation from zZ,j’ 23’j, and ZA,j' This
scheme was used and was found to be both convenient and satisfactory.

It is realized that the conditions imposed on the outer and upper
boundaries are somewhat artificial. Further justifications will be given

when the domain of calculations is discussed,
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Calculation Procedure

The governing equations were programmed in FORIRAN IV computer
language und the calculations were done on un IBM 7094 digital computer,
A block diagram describing the calculation procedure with discussions
where necessary is given in Appendix F. The computer program listing
is given in Appendix G.

e — ——— e m—

VALIDATING OF NUMERICAL METHOD ‘ - SR

The Diffusion Equation Limit

We attempt to validate the numerical results by going through a

limiting procedure. As & preliminary test, the velocity field in the
computer program was suppressed so that the numerical results would
correspond to the solution for a diffusion problem with the same
boundary conditions. This procedure was used also by Kane and Yang (36)

in a similar calculation., An exact solution for this problem in closed
form is given below (54):
- 1 2 1

T = -3- sin” J .
l,o(x-l)! + y! + 0(:&1) +y

Three numerical results are presented in Figure 35, It is seen that the
numerical results tend toward the exact solution as the domain of
calculation is extended. The discrepancy between numerical and exact
results is apparently due to the artificial boundary condition on the
outer boundary. This is further illustrated for a case in which the
lower portion of the outer boundary is insulated. The resuits are also

shown in Pigure 35, With respect to the thermal boundary conditiom,

[ il
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the non-flow example is a severe test. An inflow of air at ambient
temperature tends to make the condition Timax,i = 0 much more realistic.
As an additional test of the computer program, solutions were
obtained for various specified degrees of flow activity. As discussed
earlier, GrT is the governing parameter in this problem. The flow
velocities are large for large Gry. The numerical results for two
Grashof numbers (102 and 103) are presented in Figure 36, As must be
the case, the solution of the diffusion equation (the case of Gr—30)
is again approached as the Grashof number decreases.” At large GrT, the
region where the temperature differs significantly from the ambient
value is squeezed toward the centerline. This fact is in agreement
with experimental evidence (Chapter IV) and theory (5,38). It is also
indicative of the unimportance of the temperature specification on the
outer boundary as the Grashof number increases. We are interested in
the Grashof number in the range around 105.

Effects of the Domain of Calculation

The required computing time for obtaining a converged solution for
a given problem depends on the size of the array of mesh points.

Numerical experiments were carried out to test the minimum array size

*Kane and Yang (36) studied the laminar free convection problem
due to a heated horizontal disk in a full space for very small
Gr (<100) and found that their solutions tend to coincide with
the diffusion equation solution as Gr decreases, as is true
with the present solution., Direct comparison of these results
was not made due to difference in geometrical configurations.

1 s e Wi wk PSR
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which would produce reasonable results for the region of interest.
Calculations were made for the case of Gry = 10‘ with a source radius
of 4Ax. Figures 37 and 38 show, respectively, the effects of vertical
extent and horizontal extent of calculation on the numerical results.
It only the region defined by x €1, y £ 1 is of concern, these figures
show no appreciable difference on the numerical results when the source

radius is 4Ax and array size is increased beyond 15 x 17. PFor this

H
N
f
<R
|
J
ki

reason the "15 x 17, 1-5" (see p. 61 for explanation of this identification)
array was used for further calculations,

Effect of Mesh Spacing

The truncation error for the present system of equations is on the

order of KlAt + Kyax where Kl and K2 are positive constants depending

e v 5 im

on the dependent variables T and Z. By making either At er Ax or both
small the accuracy of the computed results may be improved. Since we

are interested in the steady state solution, the above dependence shows

e e e W 2 e+

investigation of the effects of Ax on the numerical results is described
below,

Calculations were made for Grp = 10* and 105 by subdividing the
mesh spacing in steps; the converged solution for the "15 x 17, 1-5"
grid system was obtained first. This first solution was then used as
the input for a new gystem with a mesh spacing equal to one-half that

of the first one, etc. In this fashion, the mesh spacing could be
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reduced to a reasonably small value with a reasonable amount of computing
time. A summary of the computing time for various grid systems is given
in Appendix F.

Figure 39 shows the centerline temperature distribution for Crp = 10°
for three values of ax (3", 1.5", 0.75"). A nearly linear variation
for T with respect to Ax is shown in this figure., The line for Ax = 0
was obtained by constructing & smooth curve for T(y) versus Ax on a
sheet of graph paper and reading the intersecting point of this curve
and the line ax = 0,

Heat Transfer

The mathematical formulation for our numerical calculations is
essentially that for a laminar flow case. Therefore, it is well to use
selected laminar flow results to further check the correctness of our
numerical scheme, Letting 40 be the difference between the mean plate
temperature and that of the ambient, we have:

S 1
has = -k £5

where h, k, # and Y are, respectively, the average heat transfer
coefficient, thermal conductivity, temperature and distance from the
source surface. If we define, as before, T = (8 - 9,)/a0, y = ¥/D and

substituting in the above expression, we get:

haé k3 3y k<5 Ty
or,
L Nu = -T
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where T} is the dimensionless mean temperature gradient at the source
surface. Thus, the magnitude of the dimensionless mean temperature
gradient is actually the Nusselt number. Free convection heat transfer
is uzually correlated in the following form:
Nu = C+Gr®R or Ty = c-6r®

For laminar flow n = 0.25 (e.g., reference 27). This will be used as
our basis for comparison.

Calculations were made for a range of Gry using the "15 x 17, 1-5"
grid system. The variation of Ty with Gry is shown in Figure 40, Since
laxrge GrT also means large heat transfer, the value of T  as shown in

y
T %8 expected but the value of n was found

Figure 40 increases with Gr
to be 0.11, The effect of mesh spacing on T& is shown in Figure 41.

It is clear that there is an almost linear variation of g’ with respect
to 8x. If the values of ‘Ty)axu-o (see FPigure 41) are used, n = 0.24,
C = 0.51 may be calculated. This value of n agrees well with values
reported in the literature., No value of C for a horizontal plate

(C = 0.36 for vertical plate) has been reported in the literature, but
the present result appears to be good to within a proportionality
constant. For turbulent free convection n = 1/3, therefore, some

discrepancy between numerical results and experimental data would be

expected.
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NUMERICAL RESULTS

Velocity and Temperature Profiles

Based on the numerical results for three mesh spacings and the
graphical extrapolation method described above, the temperature and
velocity flelds for Grp = 10% and 10° extrapolated to Ax = 0 were
obtained. These results are shown in Figures 42 and 43. As expected,
the indraft velocity is large near the ground level and the maximum
value of -u occurs always within the plate radius. The outer edges of
the velocity and temperature profiles are more constricted toward the
centerline for large GrT than small GrT.

Indraft Calculations in the Region near the Ground (1< j<2)

The indraft velocity near the ground is -nz of the most important
features of the flow field. Measurements show that the indraft is
largest near the ground and decreases rapidly as the distance from the
ground increases (Figure 29). Due to this boundary layer behavior®
near the ground, no feasible mesh spacing for numerical calculations
(e.g., D/16) is fine enough for predicting the detail in this region.
In order to obtain a complete flow field description, the present
method must be supplemented by appropriate auxiliary calculations,

If we use the numerical results obtained with a reasonably coarse
mesh spacing as an indication of the outer flow field, this indraft

velocity may be calculated approximately by an integral method.

*
Here we refer tc the condition that only the velocity gradient
normal to the plate is significant,
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Consider the control volume described below:

‘Y (axial)
Pl |
aY U
source Q ground
B D surface
i=l -0 X (radial)
— R —

{=] i=m

By the principle of conservation of energy and using the perfect

gas law P = % = constant, the following relation in dimensionless

form may be obtained for the control volume:*
Ay
f udy = Q (6-186)
0
whare
1 R
Q= ...j( vxdx - =—dX
rJo 8GCUcP
and q, r, C_, P and R are, respectively, the average heat flux, dimen~

P
sionless radius (r = R/D), specific heat at constant pressure, pressure

and gas constant. In this equation Q may be regarded as a known quantity

“*The conductive heat transfer term is neglected due to the small
local temperature gradients. The kinetic and potential energy
terms are very small and are also neglected.

WY
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in which the integral term may be evaluated from numerical results and
the last term may be obtained from experimental heat transfer data,
The function u(y) is found to be such that the equality of Eguation
(6~16) holds.

The numerical results obtained with Ax extrapolated to zero will
be used in the calculations., The function u(y) for the interval
0 £y £ Ay will be determined based tn as much known information as
possible. From numerical results, the end values u 1 and u o are

qu

? ?
fixed. For a better approximation, 3;} ) is also to be satisfied.
m,2

This may be computed from Y, § in a fashion similar to that given in
b

the discussion of boundary conditions. The resulting equation is:

3u R .
L’V)m " (Lluy o = 18uy 3+ Suy , = 20 o)
s

In the secondary flow region, because the velocities are small and the
flow is in a direction more or less parallel to the plate surface, we
assume that the boundary layer equation for flows with negligible pressure
gradient is applicable in the neighborhood of (m,1). This leads to the
requirement of vanishing E%;%)m 1 (reference 45). Considering a fourth
order polynomial in y with vani;hing u and its second derivative at

y = 0, the general form of the polynomial may be written as:

u(y) = by + dy3 + ey® . (6-17)
The coefficients b, d, and e may be determined from the known values

of Up,2 o Egs) 2, and Q. An equation similar to (6-16) may be obtained

?
from the principle of conservation of mass. This may be used to chec'

the results of Equation (6-16).
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The calculated results for the case of op = 520° {5 shown in

Figure 44. A discussion will be given at the end of Chapter VII.

L et
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Equations (7-1) and (7-2) may then be used to solve for A#p and ¢y in

terms of Gre, !TS; .andi.q..oThewfoilowing :raiatione:azénobtained:

2/3 [gpa 1/3
«|omg Pr_ Sz .
841 [oc,,), (-r,)] [gm] 7-3)
g8 Pr q D" ] 1/3
“u " 6%, -1,30e7 (7-4)

In the numerical calculations, 'l.‘y was obtained as a function of Grp

(Figure 40). Equations (7-3) and (7-4) show that if q is given, A#p

and " become functions only of Gry.

COMPARISONS

Substituting the experimental value of q into Equation (7-3), the
values of Aép, and hence U, may be calculated for a number of Gt.r'a.
The AOT and U, thus obtained will be used for converting the dimensionless
numerical results into physical quantities, In this manner, the experi-
mental and numerical centerline temperatures were first compared to
obtain the suitable values of Gr,r. Figure 17 shows that the numberical
results for Grp = 40000 and 25000 could fit the experimental data
reasonably well for Op = 520°F and 410°F, respectively. The values of
Ty, AOT, U, and ey corresponding to these Gr.r's are tabulated in Table 9.

It is seen that the experimental and numerical values of ¢y are in good

agreement,




VII, COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

GENERAL DISCUSSIONS

In the discussion in the early chapters, we have shown that, in
the region sufficiently close to the plate surface (<0,02", say), the
local 2ir temperature can be calculated based on molecular conduction
(Figures 21 and 22). Away from this thia region, the flow is quite
turbulent (Figure 4) and the flow field, therefore, cannc: be suitably
described by the molecular properties (i.e., Gr). It is not a simple
task to attempt to describe the detailed flow behavior in the neighbor-
hood of the source by a single overall transbort formulation,

In order to gain some insight to the basic features of the
numerical results using the turbulent Grashof number as the governing
parameter, a comparison is made between the experimental data and the
numerical results presented in Chapters IV, V and VI, respectively.

The turbulent Grashof number is defined as:

gBA6D>

GrT = T (7-1)

where AOT and ey are, respectively, the temperature difference and eddy
diffusivity characterizing the flow field, The mean heat flux may be
expressed in terms of a mean temperature gradient T_, through the

y
definition of a thermal diffusivity as follows:

— ey 08
q = (pCp), ¢, §-§ == (Cp) _E..ﬁl Ty (7-2)
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Table 9., Comparisons of experimental & numerical results,

Experimental Data Numerical Results (Ax<=90)

q €M U b
» 2 €tz | Yy :‘T : 2
oF B/hr-ft ftzlsec F fps | ft°/sec
520 800 .031% 40000 | 6.27 | 86 | 3.2 .0324
410 560 cne 25000 | 5.64 | 61 2.8 .0348

*
Average value of ¢.P, in Table 3,

Having established the values of A#p, the comparisons between the
horizontal temperature profiles and updraft velocities are then compared.
These are shown in Figures 18, 19 and 45. The numerical results show,
in general, wmore gradual profiles than do the experimental data. Omly
qualitative agreement is seen. This is due to the non-realistic constant
eddy diffusivity model used in the numerical calculations, Numerical
results given in Figures 18 and 19 show that the flow and temperature
fields are more constricted about the centerline for larger GrT.

In reality, the turbulence level decreases as the radius and the
distance from the plate increases, At some distance outside the primary
flow region, the flow field (the secondary flow due to entrainment) is
laminar, and the description of the flow behavior in this region would
be determined by the molecular properties (i.e., by Gr). There must
exist some sort of transition of the governing transport mechanisms. It

appears possible to improve the numerical results by incorporating a

spatial variation of GrT (i.e., the eddy diffusivity) in the numerical
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formulation such that Gry would increase with the radius and the eleva-
tion until it is approached to the ambient value Gr. This, however,
would require an extensive numerical experimentation. Because of the
large amount of computer time which would be required, this procedure
was not pursued.

Figure 44 shows the calcalated indraft profile for the case lp -
5209F. The results show that the calculated indraft velocity is
consistently larger than the experimental data. The percentage
discrepancy is large especially at large elevations (~90%). Since all
measurements of indraft velocity were in the laminar, secondary flow
region, it is conceivable that this discrepancy wag due to the use of
too large a value of U, for nondimensionalization, or it may have been
due to the inability of describing the whole flow field by means of a

single transport mechanism.




VIII. CONCLUSIONS

Based on the findings of this research the following conclusions are
drawn for the turbulent free convection field above a heated, horizontal,

circular flat plate:

EXPERIMENTAL

1. The turbulence in the primary flow region (Figure 4) is
characterized by low frequency (~10 cps) and large amplitude (~1 fps)
turbulent fluctuations. The fluctuating velocities are the largest on
the centerline and decay as the radius increases.

2, Because cof this large turbulence, the conventional hot-wire
technique for turbulence measurements on linearjzed tneory was impossible
to apply.

3. There exists a thermal boundary layer, within approximately
0.02" of the plate surface, in which the major part of the overall
temperature drop takes place. The temperature distribution in this
region may be calculated based on molecular conduction.

4. The vertical temperature gradient and hence the local heat
flux at the plate surface increases significantly with the radius. Data
show that the temperature gradient at plate edge is approximately twice
the value at centerline.

5. The region of significant deviation from ambient temperature and

velocity is constricted toward the centerline,

sl o ka AIRRARAT AL« R BT £ L
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6. The induced indraft is large at low elevation (~0.5 fps) and ie
largest within an inch of the ground. This indraft is on the same order
of magnitude as U. (a characteristic velocity directly obtainable from
a dynamic force balance).

7. Hot-wire method has been developed which is suitable for this
type of velocity and turbulence measurements when the information contained
in the various moments of the hot-wire voltage output is used. Details
of the data can be more clearly shown as the order of the moment increases,
being a more sensitive measure of the phenomena. However, due to the
amplification and accumulation of errors during the process of taking
higher moments, the proper ianterpretation of the high moment data may be
a difficult task (e.g., the problem of separating signal voltage and
background noise may be an analogy).

8. Numerical simulation of the the -hot-wire voltage output is
shown to be a useful *tool for the actual hot-wire data reduction.

9. The eddy diffusivity can be estimated either from the energy
equation using basically temperature data or from the product Cﬁf of the
turbulence velocity and the characteristic time data. The agreement of
available data is within 15% for low elevation points and up to 60% for

higher elevations,

NUMERICAL CALCULATIONS

l. A numerical calculation method using a time advancing, explicit

differencing scheme for computing essentially the laminar free convection
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field above a heated, horizontal disk has been developed and validated.
The calculated temperature gradient at the plate surface increases with
the radius (also an observed experimental fact). The numerical heat
transfer results obtained agree with experimental heat transfer correla-
tion (NuotRal/A) to within 4% of the value of the exponent.

2. The centerline temperature data were compared with numerical
results and the best fit was used to establish the appropriate values
of Grp and A#y, the turbulent Grashof number and temperature riss
characterizing the flow. The match between calculation and experimental
data is most successful when Gry is on the order of 109 (Grashof number
Gr based on molecular viscosity is on the order of 1010 for this work). -

3. For describing the gross behavior of the flow field, the intease
variation of eddy diffusivity in the boundary layer region is neglected
by the specification of a characteristic temperature rise Adp at the
plate surface., This temperature rise is determined also on the basis of
plate heat flux and eddy diffusivity. Only qualitative agzreement can be
obtained between the numerical and the experimental data. Clearly, the
congtant eddy diffusivity model is not suitable for describing the

complete flow field.
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Hot-wire traversing mechanism

Figure 1, Experimental apparatus
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Figure 6,

Thermocouple installation in the heated aluminum plate,
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Figure 8, Heater performance.
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Figure 11. Tunnel velocity calibretions.
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wire temperature = 300°F).
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Figure 15, Hot-wire data recording setup ~ schematic.
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Figure 25. Hot-wire bridge voltage output (Y =6", Qp = 5209F).
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SoNRENAET W




118

*(o0="¢ Iv antea Suypuods *€o0 = g 3% anywva Sujpuods
«321100 a3y £q POIYIWWION) (Qurl -23109 3yl Aq pazyjewiou) 1°Q=y)
‘wiwp IAIA-30Y pIjwiMELs uuo«amu, *1¢ 2an81a ‘®ivp axym-3oy paleyimeys jestd *of 2an313
9a%0p UOTIVIVITIO IJATM, 06 29189p ‘uoyIVIVITIO IaTM
0t 0, 09 1% 0
o% T Y Lﬁlu ¥ 7 T ) 0  — | 1 T T ¥ 0
SL°0 §Z°0 ] ~p - €L°0 sz°ol #p -
SL°0 sz°0 | Ap sL°o szrol Ao |

0s°0 20| O szol "

LS O




¥I®P 91FA-30Yy pIIRTmYIS -z vanSyg

2 avjemuand adwys (q)

¢ 1930mwand adeys (w)

) b Yo7
00°1 SL°0 0s°0 ST 0 4]
H L T 4 0

119

(006 = “p)%%

N 0°1 "o - "p) S0t




120

SRIN M0y fras = AN rpa A S LA D S S e O RUTIMSIPBGE G | ¥ LA W s N L R T - P

(ponujivod) z¢ sandyi

l&b Ayyoorea moY3 241399338 (P) uR aaj3omeand adeuyg (2)

' Vi) b Vil ]
00°1 <L°0 0$°0 §2°0 0 00°1 €L°0 050 L 4]
¥ LB [ ) ) 1 ] | ¥ 1 ]

o't

mA/A

(006 = ")

1

/(20 - "D)

~+0°1

(006 = “p)%y

O it vl d - T




.u..o«.uml:-: 30 $399339 - ®IPP IIIM-IO0Y PIITMWES ‘gL Ian8yy

"/ “ArD
00°1 SL°0 0s°0 sZ°0 0 00°1% 6L°0 05°0 (A8 1] oo
[ I 1 T r I T I
_ °¢ ITqel U I3I0U003F 2338y
4
~
\
i
,
S N
1 0y
w ~4s0
=
) -
| [=]
2
+
X
-1 01




M T IR v s

. e St i ar e . Vi

PR

o<

122

T

RTIIRAT T

2 e o

-
A
o 0.5 1.0 1.5

4, V4

Pigure 34, Numerical results at various stages of calculations for a
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C, =Gy =4, Gry=7.43x10% Pr=0.708),
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Figure 37. Effects of domain of calculations on the numerical results -
verticel extent (Gry = 104, Pr = 0.708),
(Lines shown are for grid systems: 17 x 17, 1-5; 17 x 21, 1-5;
17 x 25, 1~5. © shows the deviation of the results of a
17 x 13, 1~5 system from the lines),
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Figure 38. [Effects of domain of calculations on the numsrical results -
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Dimensionless temperature
Effect of mesh spacing on centerline temperature
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Note. All calculations are ﬁad&whiiﬁs>i_
15 x 17, 1-9 grid system.
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Figure 41, Effect of mesh spacing on I,.
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Figure 43. Numerical results for Grp = 109 (extrapolated to
correspond to Ax 0).
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Figure 44, Indraft \'clocit;“p;'ofile near the' ground (8p = 520°p,
X=12", U, = 3.2 ft/sec),
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Appendix A

MOTIVATION OF RESEARCH

The origin of this project was an attempt to study the gross flow
behavior ‘n the vicinity of large unconfined fires. This problem has
been the subject of several investigations during the past decade (29,
30, 31, 37). Experimental observations suggest that, in general, the
physical behavior of a large fire may be described in terms of che four

zones shown below (56):

\ / -

\
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/ zone (entrained flow)

VY
1 |
|
]

U ‘ core zone
VARY

1] A —
’/ /( surface interaction

zone

base of fire/
ground aurface7

FTrrTrrr7r777777

1. Plume Zone
Above the fire there is a rising current of heated gases. The zone

where this current is the dominant feature is called the fire
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convection plume. Entrainment of ambient air and, therefore, cooling
of the rising column take place. The flow is fully turbulent. PFire
whirls may sometimes be present. The affected cross section of the
surrounding air gradually widens &long the path of the ascending

mass of the hot gases until its momentum ies balanced by entrained
ambient air., The fiow behavior in the plume zone resembles that of

a free jet. The boundary layer assumptions are valid and under some
circumstances similarity solutions may be obtained. Hathematical and
experimental investigations of the piume have been fruitful (e.g.,
references 4, 5, 6, 7, 8, 52).

Secondary Flow Zone

This is the "upstream”" region of cold air outside the fire. In an
otherwise still ambient atmosphere, the fluid motion in this zone

is due solely to the pressure defect resulting from the buoyancy of
the hot ascending gases. The entrainment and the associated indraft
are largest at altitudes relatively near the base of the fire. This
indraft is substantial for large fires; it tends to prevent the
outward lateral propagation of the fire., Thus when the indraft is
large enough all the burning may be confined in a relatively stationary
reglon. This is one reason why the ground indraft is so important

in fire behavior.

Surface Interaction Zone

This is the region of fuel supplies such as buildings, trees, etc.

Major destructive burning and the release of gasecus fuels take place
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in this zone, Inside this zone are intricate interactions of heat
and mass transfer, chemical reactions, and air entrainment. In the
start-up phase of a mass fire, ignition, spreading and the interactions
between individual small fires occur in this zone. The burning
process in this region is usually incomplete. 1In a large area fire,
this zone, although the source of energy supply, is usually confined
in a region very close to the ground level and is very small compared
with that of the whole region which is significantly influenced by
the fire (Reference 29)., It is believed that the detailed physico-
chemical phenomena associated with combuation in this region are

only local effects, and that the large scale convective motion in a
fire is governed primarily by the heat release, Thus, for modeling
purposes, we assume that the detailed knowledge of phenomena in this

zone is not essential on understanding of the gross flow behavior of

large fires.

Core Zone

Near the base of the fire is a region linking the surface interaction
zone, the secondary flow of fresh air and the convection plume above,
Here the pressure defect driving the low elevation secondary flow is
developed, The winds, temperature, and oxygen concentration experi-
enced by the surface interaction zone are determined by the core
phenomena. The general understanding of the physics in this zone is
essential to the studying of fire flow fields., The flow field in this

zone cannot be described mathematically by the boundaxy layer type
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formulation as used for convection plume calculations (4,5,6,7,8,52).
This aspect is demonstrated by Stewartson (32) with an example of
the natural convection above a heated horizontal plate.

The fire problems studied to date have been concerned primarily with
the convection plume well above the fire. Solutions are based on free
boundary layer approximations and the assumptions of small density
changes and similarity profiles, Results of thesge calculations are in
good agreement with available experimental data (4,5,7,52). Experimental
investigations of the behavior of large fires have been carried out by
personnel of Pacific Southwest Forest and Range Experiment Station.

Wood piles or simulated houses covering areas up to forty acres were
burned. Although numercus data were collected, only a very limited
amount of fire flow field data have so far been made available to the
public (29).

Due to the complexity of the details of the fire problem and the
prohibicive cost of field experiments, it is desirable to utilize
mathematical models to the greatest extent feasible. A logical start
is to try for an approximate description of the large scale flow features
with & simple mathematical model, and to then attempt to fill the gaps
by adjustment to agree with field data as available.

As discussed earlier, the flow field generated by a fire is driven
primarily by free convection effects resulting from the heating of the
air in the proximity of the fire. We regard the combustion processes

in the surface interaction zone as local in nature. We then assume
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further that the heat release from the fire is the dominant factor which
govern the gross behavior of the fire flow field so that the fact of
combustion may be modeled by prescribed temperature or heat flux distri-
bution at the base of the fire.

A limiting case of this is the free convection field produced by a
prescribed uniform heat source, Hopefully, this will qualitstively
describe the gross features of the flow induced by a large area fire and
will provide a starting point for the fluid mechanical study of a fire-
like flow field. Once the problems associated with this fluid mechanical
model are overcome, as a second step, a more realistic model including
fuel and air mixing, followed by gas phase combustion, could be developed,
for example, by simulated spatial distribution of sources of heat and
mass.

For mathematical simplicity, the free convection due to a horizontal
heated, circular surface flush wicth the ground zurface in an otherwise
still ambient is considered as the model, This model provides a flow
field which describes the basic features of a large fire as discussed
earlier in this appendix,

The free convection model has also been considered as an approach
to the scaling of the indraft velocity due to an ares fire (31,37,57).

By & dimensional analysis, Byram (57) has shown that preserving the
Grashof number between model and prototype is impossible for any useful
length scaling ratio. Fortunately, at the expected magnitude of Gr in

a fire (-1015), the flow is fully turbulent and molecular transport
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phenomena have been postulated unimportant. Thus if Gr can be neglected,
for geometrically similar models, the heat flux and indraft velocity are
proportional to the square-root of the length scale. The validity of this
concept has been demonstrated experimentally by Lee (31) as conclusively

as possible with the limited data available (30).




Appendix B

ENERGY BALANCE

The calculations for the energy balance terms summarized in Table 1
are discussed in this appendix. Three types of energy loss are considered
here:

2. Radiative losses from the aluminum plate, the asbestos ring,

and the floor.

b. Convective losses from the asbestos ring and the floor.

c¢. Conductive losses through the insulation jacket and the floor.
As an example, the calculations for Run No. 1 are described below:

1. Radiative Losses

The following equation was used for all radiative loss calculations:

Q = ecA(s% - ‘q&) Btu/hr
where ¢ (=537°R), o(=.1714 x 1078 Btu/hr-ft2-R%), ¢, and A are,
respectively, the ambient temperature, Stefan-Boltzmann constant,
emissivity, and heat transfer area,

2, Convective Losses

From the experimental correlation Nu = 0,141 Ra1/3 (Reference 26)

and the definition of q, = has, we estimate:

ge = 0.161k [pr 5}}}1/3“"’3

.
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Using the property values for air at Qn(SS), the above expression

way be simplified to:

Qe = 0.24380 133 4 Brushr.

The calculated energy losses for the above two items are summarized

below:

Part Name Aluminum Plate Asbestos Ring Floor

b e T S P e O € AR

¢ .05 .96 .91 ’
A, §t? 3.18 .84 1.6 ;
6, °r 979 740 597 }
Q., Btu/hr 229 294 110 (
Q.» Btu/hr -—- 231 86 |

Conductive Losses

These losses are from the insulation jacket and partly from the floor.
The temperature at two points along various heat transfer paths were
measured (see Figure 2 for thermocouple locations). The total heat
transfer surface was divided into several parts. For each of these
surfaces, an average temperature drop was.dhtaised fram the messured
temperature data. Since the conduction surface ares, the length of
path, and the thermal conductivity (No. 4 vermiculite, see footnote

on p.1l5s/) are known, the heat transfer was calculated by:

Q= -k A9 A 3Btu/hr,
AY

The calculated total conductive loss through the insulation jacket

was 347 Btu/hr and the conductive loss through the floor was 45 Btu/hr.




Appendix C
TEMPERATURE CORRECTIONS

The temperature indicated by the thermocouple is corrected for

losses due to radiation and conduction. We refer to the detailed

configuration of the thermocouple give in Figure 20.

Heat is transferred to the exposed surface (0.4" long) of the

thermocouple wire by convection and lost from the same surface by

radiation. Heat is also lost by conduction through the portion of the

thermocouple wire in the stainless steel tubing. For thermal equilibrium,

we require that deonv = 9cond t Qrads this gives:

k (6 - 6,)/L + A, u(o‘t' - o:)

Aconv (0 - 0 = Acond wire
where

Aconv = Apag = ®dL(L~D) + *D2 = 7.29 x 10°° f£t2

> 2 = * -7 2
Acond xd“/4 = 2,26 x 107/ ft

¢= emigsivity = 0.8
o= 1714 x 10-8 Btu/hr-ft2.p4

6, = ambient temperature = 537°R

()
8 = true mean temperature of the air, °R
#, = mean temperature indicated by thermocouple ocutput, °r

L = length of conduction path = 0,25 ft (see Figure 20),
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Substituting the appropriate values into the above squation and

rearranging, we get:

b g s
h - 4 ¢
Bo= g - g =275 e, LI (—13%) - (-1-0-‘5) (c-1)

where the first term on the right hand side of the equation is the

Sv o gy RATCRREAR <

correction due to conduction loss in OF and the last term is the correction w
due to radiation loss ia °F.
Consider the heat transfer surface in the exposed portion of the
thermocouple as composed of a sphere of diameter D (for the bead) and a
circular cylinder of diamter d (for the wire); an equivalent wire

diameter weighted by surface area was used for heat transfer coefficient

[ERY S gy

calculations,

2
dg = S22 GO0 . o gu42",

At an assumed air temperature (ea.g., that calculated based on conduction
only), the properties of air may be found in Appendix III of Reference
58), with the local mean velocity from velocity measurements, the local

Reynolds number may be calculated. From heat transfer correlation (e.g.,

Reference 58, Figure 7-3), the heat transfer coefficient h may be '

calculated. The temperature corractions thus obtained are shown in
Figures 21 and 22, A numerical example is given balow.
Consider the point X = 0, Y = 0,02" for Run 1 (Figure 21). The

local mean velocity was obtained from interpolation between the points
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Y = 0 and 3". Q, was estimated to be 458°F. The following additional
data were used:

V = 0,009 £i/sec

o, = 782°

k = ,0224 Btu/hr-ft-F

¥ = 4.3 x 1074 £t2/gec

Re = Vd /v = 0.024

since this Reynolds number is so small (forced convection data unavailable),

the actual heat transfer is in the free convection regime, Setting Ra =
PrGr = PrRe2 and using Figure 7-3, Reference (58), we get:
Nu = 0.51

h = Nu(k/dg) = 9.5 Btu/hr-ft2-F,

Substituting the appropriate values into Equation (C-1), we get:
A9 = 116°F

Finally,

0 = & + & = 438OF

Error Analysis

In the above calculation procedure, we need to estimate the values
of ), and V for computing the heat transfer coefficient h. From the
dependence of h on the governing parameters, it can be shown that h
depends only weakly on the value of ¢, and more strongly on V. Experi-
mental heat transfer correlation (Reference 58) shows that the change

of Nu is very gradual in the range of our interest (Ra-vIO'a). Spot
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checking of the results were made and it was found that an error of 20°F
on 0, would result 1°F and a 20% error of V would result a 5°F change in
the temperature corrections. Since 20°F is larger than the possible
variation in our temperature measurements and207% error in V is a
reagsonable upper bound, the estimated error in our temperature corrections
would be less than 6°F.

The source of error during data taking was basically due to the
drifting of the recorder chart paper, (1 mm is a quite noticeable amount).
This drift would represeat a maximum possible error of 0.1 mv in the
thermocouple ougput, or an error of ~5°F., Consequently, the total
possible error in our temperature measurements would be approximately
11°F. Since the main contribution of correction is due to radiation loss
which increases rapidly with the wire temperature, it is clear that the
amount of correction and hence the associated error will be greatly

reduced when the thermocouple gets away from the plate.
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Appendix D
DERIVATION OF BQUATION (5-4)

W o= (824" ((:2-» + (A-A')]-E = (22-4)2 + 2(A-A") (B2-a)+ (A-A )2

Multiplying by C; and rearranging the first of Bquation (5-4) will result.

w2 . (B2-A')4 = [(EZ-A) + (A-A')]"

= (E2-A)% + 4(A-A")(22-4)3 + 6(A-A')3435-A)5

+ 4(A-A")3(2e-a) + (A=A")%
Since,

(EZ-A)S = [(Ez--?) + &I_A)]3

- (32-;2')3 + 3(13-;) (32-?2')2 + 3(?-1\)2(:2-;5) + (?-A)’

(2-g2)3 4 3(E2-a) [(EZ-A) - (?-A)] 2 4 (22-a)3

(82-8%)3 + 3(g2-a) [(zZ-A)z . (?-A)Z] + (K2-p)3

(82-22)3 4 3(22-A) (B2-4)2 - 2(22-p)2

We have,

w2 . @1 4 G(A-A") (22-ED)3 4 12(A-A')(?-A) (!!-A)!- a(A-A')(;E-Aﬁ
+ 6(A-A")2(E2-A)2 4 a(A-A')3(F-A) + (A-A")4, (D-1)

Multiplying by C12 and neglecting the term 4012(A-A')(!2-35)3, the sccond

of Equation (5~4) will result.
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This neglected term is not zero in general but ig very small relative

to the retained terms for an assumed probability density of E. To

illustrate, let this distribution be Gaussian,

B(E) = o exp [—AZ(E-:E)Z]

vhere E is the average of E; a? = (2¢'E2)'1 and o = variance of E.

Letting u = A(E-E) we have

I -L:Ez PAE -V);—Lj%-o-’ﬁ']z e%au = B2 +-2—iz
(£2-293 L"(zz-ii)%dz
'V}?L:[(%FE)Z - (EZ +2—i-2-)]3 e-v? 4y
'#Lj [“2 +2Eu - 1/2] 3 eu? gy

--}5- (1 + 622 B2
or,

(E2-E2)3 = 8 op* (1 + 3E?)

From the data given in Table 6, the value of (E2-§§)3 and hence the
neglected verm 401202(32-52)3 can be calculated. Calculations show that
this term is on the order of 10°3 - 105 and its adjacent terms in
Equation (D-1) are on the order of 1. Therefore, the neglect of this

term does not introduce apprecialbe error and is well justified.




Appendix E

RANDOM VARIABLE ALGORITHMS -

NUMERICAL SIMULATION OF HOT-WIRE DATA

Two basic schemes for obtaining the random variables for hot-wire
data simulation are described in this appendix. The parameters to be
specified consist of the standard deviation of the fluctuations and
correlation coefficients as defined in Equations (5-8) and (5-9). In
this procedure., a set of four random numbers are generated for computing
the normalized fluctuating velocities as defined in Equation (5-7). The
computation involved is such that the fluctuating velocities are consistent
with the specified correlation coefficients. The algorithms for these
computations are described below.

For convenience of discussion, the flow variables (¥, V, ¥, 7) in
Equation (5-7) are redesignated by ¢;, i =1, 2, 3, 4; thus the correla-
tion coefficients become.;;:;. The problem is to compute a random
sequence of sets of ¢; consistent with the specified set of values of

—

$i¢j. Two schemes for obtaining ¢; are described below.

NORMAL DISTRIBUTION SCHEME

Let ¥; be independent random variables with zero mean and unity
i standard deviation. Let P be the probability distribution function of

the flow variables ¢, and set:

DI 7 (E-1)
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where « j are constants. Noting that the Jacobian C of transformation

between ¢;-space and ¥;-space is a constant.

1 & — 1
=T £ n1 % % %Y T EEl‘ik'jk (E-2)

It is convenient to choose C = 1. The quantity ¥ satisfy:

S/ B %)
where ‘H, is the Kronecker delta. Letting:

‘i’j = Kij + 8ij’ and

*15 7 b3 7 Py
we have,
—_— 4
TR T f?_-l By = 2430 Qo = 8500
whence
1 4
a,, = 2?2 a,, a, =K (E=3)
13" 2 [§1 ik 4k 15]

A =
Note here that if the ¢'s are independent then 31 ‘j ‘ij’ l(ij and aij
as perturbation about an uncorrelated distribution. This method has
been found to converge rapidly, Equation (E-3) is the basis for an

iterative solution for the aij starting with ‘1_1 = 0. Once aij are

computed, the values a«,, and hence ‘i can be computed.

ij
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An approach to measurement problems based on principle of least
bias has besn discussed by Lees (55) and Janes (59). Following the
formalism presented by Lees, we find that if only first and secoad
moments of the flow variables (u, v, w, ¢') are prescribed, c.g.,'ﬁ', 7,
’uz’ 3\7, etc., the least biased distribution functior consistent with
the given set of moments #nd correlation coefficients is given by

Equation (E-1) with the #'s Gaussian. Gaussian distribution was chosen

for all basic calculations.

AN ALTERNATIVE GENERAL SCHEME

This scheme is the same as above except for higher correlations and
is designed for consideration of a number of random number probability

e
distributions., For a given set of correlation coefficients |010,‘Sl,

the following set of relations are first written:

O

S8 "B de + b,

R T Y (E-4)

WE Tt he tehd
DT R R T

$34, " Crhd T Codid) + Cy
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vhers a, bl' bs, €1» €2 Cq oTR constants to be solved in terms of
“. The computatica will proceed if these constants satisfy the
following requirsmants:

je| S12

i) + H $1 (E-5)

lcl' + °2| + |c3’ <1

Otherwise, the set ‘o';".'j’ vill be called inconsistent and the computation
is terminated.

Take four independent random numbers % te1,?, 3, 4 from & set
of specified probability density (e.3, Gaussian distribution) and four
more independent random numbers Ry, { = 1, 2, 3, & from a set vwhich is
uniformly distributed on the interval (0, 1) and define S(R, c) such
that:

G(R, c) =1 forRSc

(E-6)
=0 forR>c¢
The flow variablas ) are then calculated as follows:
Bl
¢, = Sign(a)G(R,, fal)e, + G(R;, 1-ja})y,
¢, = S1gn(b1)G(Ry, |by|) e + Sign(by)G(R,, Ib2])e, (E-7)

+ 6iRy, 1= by |- oy )

e it e
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®, = 5ign(c;)G(Ry,]c |4, + Sign(c,)G(Ry,[e,|)e, + Sign(c,y)G(R,,

fo3] 295 + Ry, Lefeq] - feo]=[esd ¥, (E-7)

GENERATION OF THE ¥;

The random varialles *i used above are generated from two basic
sets: a normally distributed set with mean zero standard deviation unity

and a uniformly distributed get R; on the interval (0, 1). The former

was used for obtaining the normally distributed *i and the latter was
used for obtaining the normally distributed R1 and three other types of

distribution of "i'

v =2V3 (R - 0.5) (E-8)

¥ = +1 for R 2 0.5

(E-9)
-. for R« 0.5

v \-2/3
( 8\ \ [0.355773( LR - 0.79 (E-10)
\¥b R

Equations (£-8) and (E-9) describe a uniform distribution of ¢ in the

range - VI < ¥ SVJ and an equal distribution of ¥ =%1, respectively.

Equation (E-10) is derived from Cauchy distribution,

fn =2 a+ B
Let v

T vy dv
-00
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whence

x (R ~1/2) = -ﬂ_tz + tan'l\' . l:an'lvk %

Expand the above equation for ¢>>0 and rearrange,

Solving this equation for ¥, Equation (E-10) is obtained. Equation
(E-10) is used for the tail ond values of R (i.e., for R>»0). A
rejection scheme based on Equation (E-10) is described in the following

block diagram:

Generate a new R

{ yes
R < 0.02027? vy =¥

4no.a
es exit

—[1 - R <0.020277— ¥ = ¥, B

Generate a new Eh:

R S (14+¢9)"2

exit

Ino
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COMPUTER PROGRAM
This program is written in FORTRAN IV computer language. Three
permutation schemes have been used in the main program for the purpose
of parametric studies. Since there is no difficulty in programming these
schemes, only one of them is included here,
Input Data
1. AW, BW, CC, CN, AL, GAM correspond to £, B, k%, 0.5, & 7, in
Equation (5-10).
PHIV, THEV, VM correspond to ¢, 0, Vm in the sketch on p. 45
ID - display index: -2 means complete display; -1 means standard
display.
NO - a number to initialize random numbers.

2. SUTI(I), SVTI(I), SWTI(I) correspond to a matrix of values of o,

Iy’ Iy’

3. CKUV, CKVW, CKWU, CKUT, CKVT, CKWT correspond to the six correlation
coefficients in Equation (5-9).
SIT = %
DPHIW = th (interval of L wire orientation)

Qutput Data
1. UBX, VBX, WBX, TBX are, respectively, the simulated average values
of u, v, w, ¢'.

2. SUTX, SVIX, SWIX, STTX are, respectively, the simulated values of

[ .
u? Gv) ﬂw’ 00

L ek Wi iath MRS by A
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3. CKUVX, CKVWX, CKWUX, CKUTX, CKVTX, CKWIX are, respectively, the

K , K

gsimulated values of K,y Kw K Kuo’ ve® Kue

» Koo

4. Ebu, LOB, L1B, L2B are, respe. tively, the simulated values of -ﬁ,
;17-2,7, w2, SE, S0, SL1, SL2 are, respectively, the standard
deviation of the simulated values of E, W1/2, W, W2,

5. RLO, RLl, RL2 are, respectively, the values of W, W, w2 divided

by their corresponding values for ¢ = 0°,

6. ROl = (WL/2)2/W, Ro2 =(W1/2)4/WZ, R12 = W2/w2,
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HOT WIRE SIMULATION PROGRAM - PARAMETER VARIATION SChEME NUMBER 1A
SYSTEMATIC VARTATION OF SINGLE VARIARLE DISTRIAUTION FUNCTIONS
E:SORT((]-0+AL'TT)'AW+(IOOOGAM'AL“TT).HN‘(SQRT4UPPZ¢CC’LPL2)|"CN)
REAL LOB,sL1B»L2BsLCRsLIRsL2R

LOGICAL FLAG

DIMENSION Cllst) sBlbolod) sSCI4)1S5RILG)sCKILL)SUTIILI00),SVTI(100
1)’5NTI(100)vSUMF(?Q)'UTT(5000)OVTT(SOOO)OWTT(5000)9777(5000’02‘4)9
?2R()

COMMON A'JoBWeAL +CCoCNoPHIVTHEVIPHIWs THEWsVMaSUT oSV ToSWT ST TeCKUV Y
1CKVW o CEWL sCKUT CKYVT sCRWT oNMAX 9 1C3109CKoR9SBaCoSCoFLAGIEBWSE 9LOR,SL
205L1BeSLIsL2BsSL2eDPHIWIZaRISUMESUTToVTTWTToTTT »GAM

READ(5s1 1AWsBWsCCoCNpAL 9GAMIPHIVe THEVIVMe JDsNO

1 FORMAT(2FBoebstFTebs2FBe39F8el/12416)

WRITE“642)1AWsRWoCCoCNrALIGAMPHIV s THEV VM IDsNO

2 FORMAT(133HIHOT WIRF SIMULATION PROGRAM = PARAMETER VARIATION SCHF
IME 1A~ VARIATION OF DISTe FCNe INDEX IC AND NOs TRIALS N /67H EsS
20RT({(1404ALRTT ) #AWH (14 0+GAMRAL#TT ) #BWH# (SQRT (UUPP2+CCHUPLZ) ) ##CN) /4H
FOANZFTeb 9 2X3HEW=F T 04 02X3 2CxF 7049 PXIHCNZF Tk 12X3HALEF 70492 X4HGAMSF
4744 92XSHPHIVEZFRe39?XSHTHEV=FBe 20 2XIHVMaFT44/6H 1081292X3HNO=]6)
RN=RNU(NO)
RNERNN(ND)
1=0
3 I=141

READ(Se4ISUTI(T)oSVTLICI)eSWTI(T)
4 FORMAT(6¥1045)

IFLSUTI(1)eGEL0e0}GO TO 3

18s1=1
5 READ(594)CKUVCKVW s CKWUICKUT s CKVT yCKWT o STToDPHIW

JFICKUVeLTeUe0)IGO TO 10

WRITE(H+vE£)ICKUVoCKVWICKWU s CKUT 9 CKV Yo CKWT o STToDPHIW
6 FORMAT(HHOCKUV=FTeb s3XSHCKVWSF 70k s 3XSHCKWURFT 49 3XSHCKUTSF 704 93X5H

1CKVTEF 7ol o IXSHCKWT =F T ol o 3XGHSTT=F 743 93X6HDPHIWSF843)

DO 9 Is141S

SUT=SUTI()

SVTESVTI{D

SwWT=SwWTI (1)

WRITE(6»TISUT4SVT9SWT
7 FORMAT(S5HOSUT=FTe5+5X4HSVTEF94S45X4HSWTEF945)

DO 9 JU=mleb

1CaJ=-1

HO 9 Kx1,3

IF(KeEQe ]l )NMAX=100

IF(KeFNe L INMAX=400

IF(KeEQeZINMAX=1000

WRITE(6+£&) 1CoNMAX

8 FNARMAT(4ROIC=T1245XSHNMAXSTAL)

CALL XWIPF

[F{eNOTSFLAGIGO TO 5

9 CONTINUE
6N T8

10 STOP

END

v s e m

—TAST =




SUBRGUTINF XWIRF

REAL LOB /1L 18¢L2B+LORSLIRSL2R

LOGICAL FLAG

DIMENSION Claeb) oP(4ebek) oSClL)eSRILeb) sCRIL046)»SUTTI(1003+5VTI(100
1) eSWTIL1GO) ¢SUME(2C) oUTTIS000)sVTTIS0N0) «WTTI{S00C)eTITIS5000)02(k)
2R(Y

COMMON AV oBW AL s CCoCNePHIV o THEVIPHIWoTHEWsVMeSUT »SVT o SWT ¢STToCKUV e
LCKVW s CRWUsCKUT 9 CRVT o CKWT sNMAX ¢ ICo 1D s CKsRoSBoCoSCoFLACSEE»SELOBSL
200L1BsSL1sL.2BsSL2sDPHIWIZsReSUMELUTTsVTToWTToTTT 4GAM

THEWs0,0

PHIWs~DPHIW
1 PHIWSPHIW+DPHIW

IF(PHIW.GTL18N, 0160 TO 2

IF{PHIWeOTe90eNaANDeCKUVeEQeOaCeAND e CKVWeEQeOeDaANDsCKVT4EQeMeDoAN
10eCKWTeEQeOe0 s ANDCKWUSEQs0e0)GO TO 2

CALL WIRFSP

IF(NOTFLAGIGD TO 3

GO T0 1
2 IFICKUVENeCKWUSAND e CRVTEQeCKWTIGO TO 3

THEW=904(

PHIw=0e0

CALL WIRELSP
3 RETURN

END




2
3

b

9
6

7

8

81

163

SURQNYT I ME WIRFSP

REAL LOBsL1RSL2BILORILIASL2R

LOGICAL FLAG

DIMENSION Clos6)2Blbnbsb} sSCIE)oSH{bLob) sCKILvk)osSUTL. ;00)9SVTIL100
11eSWTI(I00 ¢ SUME (20)UTTI5000)sVTTIS5000)eWTTIS000)eTTTIS000) 2 M),
2RUB I JALF lask) pSUMA{ G e &)

COMMON AW oBWAL sCCoCNIPHIVs THEVIPHI N s THEW ' MaSUT 9 SVT o SWToSTToCKUV
TCRVW s CRWU s CKUT o CKVT o CKWT oNMAX 9 IC 9 ID0CKoH o SBoCoSCoFLAGIEBsSE WL OB SL
200l 1BoSL Lol 2BeSL29DPHIWIZIRISUME w1 iTToVTIToWTTsTTToALFeSUN AgGAM

IF(NMAX,{ TeC)GO TO 10

FLAGs s TRUE »

CC(1¢2)sCKUV

CK(2¢3)2lKXVW

CX{1e3)eCwWl)

CR{lol)=CXUT

CK{2s4)a(KVT

CK(Fpl ) XWT

00 1 I=],4

DN 1 Jsles

JF(leEQu.tlCK (1 9u)m]e0

IF(1eGTe 13CKIToJ)SCK(Je])

TF(ABSICH(19J))eGTele0)FLAGEFALSF

NN 4 X3 g4

SC(‘,'(..('

20 3 Izl

CltleX 120,40

SBITek)=( 40

DO 2 Uzl b

BlledesK1=2040

1F( '.EQ.J.ORQJQFOQ(Q(‘R.K.FQQT yGO TO 2

BilsdsKk)z{CK1Tou)=CK{SoKIBCKIKIi)}1/{100=CK(JoK)®B2)

BUloKo 1 m{CK (T oK) =CRIKPJIBCK(I9]) )/ {140=CKIKoJIRO2)

IF(ABS(ECloJoK))‘ARS(“(loKoJ)l.GT.loO)FLAG'.FALSEo

L2]0=]=U=~K

((lOK)I(C(‘IOK)"]o:'CK(LoJ)"2)‘(K(Ll()'(CK(l.L"CK(LOJ)'CK(JOI))
I'CK(JOK)'(CK(Jol’-C((l.L)’CK(L-J)i)/(an'CK(L'J).’Z'CK(XOL).‘C“(IO
2L)“CK(L|J).CK(J'X))‘C‘(JOX)'(CK(J'[)-C(‘lOL).CK(LQJ’))

CONT I NUF

SCUKI=SCIKI+ABS(C (] oK) )

XF(SC(K)oG?Ql.ﬁ’FLAG.oFALSEO

CONTIN'F

IF{IDeGT 4 ~20RFLAGIGO TO &

HR]TF(&!S)“CK'I'J)OJ‘IQQ)QI'It“)'(((8(ltJOK)0('105)0J'194)0x'105,
1o ltCUTodyeum)l o) o lalob) s iSClIYalmygd)

FORMAT(1HO o (GF 1244 05X 9bFl2ek)

IF(FLAGIGD TO A

WRITE(647)

FORMAT (3 THOCORRELATION DATA INCONSISTENT = EXIT)

RETURN

IFLIC.GF4NIGO TO RO

DO 81 Ix]sa

D0 81 U=l

ALF (1912040

00 83 N=1s20V

NO 82 I=, 44

Ny K2 Jriek
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SUMA (15012040
LS & ART
82 SUMl(lOJ)=5UMA(IOJ)*ALF(;tK)‘ALF(K )
DO 83 I=slyb
NO 83 Jsleb
ALF(IOJ)=0¢5'(-CK(XoJ)#SUMA(IoJ))
lF(loEQoJ)ALF(loJ)*ALF(xOJ)*°o5
83 CONTINUE
IF(ID.EQ.-?)HRITE(6’BQ)C(ALF(!.J)oJ*lo“lolSlob’
84 FORMAT(IHOALF{1sJ)/1H 216F8e5)
an TH 10
80 A=CK(142)
B13CK(2+3)
B8220.0
lF(CK(lo?i"?.LT.]00)81'5(30107)
IF(CK(102)##2,LTe1e0)B22B1302,1)
Cl=CK(194)
C220.40
C3xNo0
IF(CK(I'Z)'CLv293)’CK(301).NE.I-O)C1=C(106)
lF(CK(loZ)'CK(ZvB)’CK(3!1)oNE.lcO)CZ'C(Zok)
IF(CK(lsZ)’CK(ZoB)'CK(!Dl)oNE.loO)C3=C(3ok)
lF(lD.EQ.-Z-AND.NMAX-GT.O)wR!TF(6.9)A9510320C10C20C3
9 FORMAT(3H A=F7.“’3X3H51IF7.“03X3HHZ'F7.603X3HC2'F7.“03X3HC2'F70“'3
1X3HCI=F T 44)
10 RASPHIW/57,29%8
BETA=PHIV/57427958
ALA= (THE\ -THFW) /57,2958
EIHSIN(BD'BETA)*COS(HB)’S!N(BETA)!(IoO'COS(ALA)l
E2=SINIALAY#COS(RR)
E3'COS(BB‘BETA)-COS(BB)’COS(BETA)0(loO-COS(ALA))
N=0
DO 11 I=1s6
11 SUME(I)=ue0
IF(PHIWeIF+040,0R.THEWLNE40a01GO TO 14
DO 12 157,20
12 SUME(1)30.0
IF(NMAXLLTeNIRD TH 14
1F(LIDEQe~2IWRITE(6013)
13 FORMAT(1H005X2HUTolOXZHVToIOXZHNTolOXZHTTolOXZHEl010X2HEZ.10X2HE3.
17X4HUPP2 ¢ 8X4HUPL2 9 9X1IHF)
14 DA 20 TNz 10N
N=N+]
IFINMAX.LT«0})GO TO 17
DO 16 I=1y4
IF(1CsLESO)Z(TY=RNNEO)
IF(1CeGT 01211 )2RNULO)
IF(1C.EQe~11G0O TO 16
IF(1.LE«3IR(T)=RNU(O)
IF({1CeEQL1IZI1) 53,6641 %(2(]1)=0e5)
IF({1CeECe212{1)12SIGNI140s{2(11~0s%))
IF{ICsNES31GO TO 16
ZAAMINT (2(1)e(140=2(111))
IF(ZA.LT.O.02027)Z(l)'SXGN((SQRT(09355773‘ZA’“(-2.0/3.0’-0.79))Q(Z
1(1)=~0.58))
IF(ZA«LT+0e02027)GO TO 16




165

15 R2=RNU{O} ’
203)%4s 0B (R2=0,5)
RZ=RNU{O)
IF(RZ4GTa{1.042(1)%82188(=2})GO TO 15
16 CONTINUF
IF(IC.GE«DIGO TO 160
UT=(1e0-nLF(291))%2{1)=ALF(152)%2(2)=ALF(1+3)1%Z(3)~ALF(104}#2(4)
. VTS(1a0~nlF(292))%2(2)=ALF(243)%2(3)=ALF(2+4)%2({4)~ALF{2+1)%2(1)
WT=(1e0~ALF(343))82(3)=ALF(394)%2(4)=ALF(3s1)%2(1)~ALF(3+2)%#2(2)
TT2{1e0-ALF (444 ) 1 RZ{4)=ALFIGs1)*Z(1)-ALF (4921 #2(2)~ALF(493)#Z(3)
GO TO 16}
160 UT=Z(1)
VT*Z(2)
IFIR(1)eLFoARS({AIIVTaUTASIGNIY 00 A)
WTsZ(3)
IFIR(2)«LESARS(RI)IWT=UT®SIGNI140,4B1)
IF(R(2)eLESABS(BI)+ABS(R2) s ANDsR( 2'eGToABSIB1) IWTaVT#SIGN(100B82)
TT=2(4}
IF(R(3)eLFeABSICI)ITTRUTH#SIGN(240,C1 1
IFIR(3)eLELABS(C1)+ARS(C2) e ANDeR(3) sGTeABS(CI} ) TTaVT#SIGN(160+C2)
IFIRI3)eLEoABSICI)+ARS(C2)1+ABS(C3) o ANDGR(3),GT4ABSICL1)+ABSI{C2))ITTe
IWT#SIGN{1e0+C3)
161 UTTIN)sUT
VITI(N)sVT
WTTIN)sWT
TYT(N)=TT
6N TO 18
17 UTsSUTTIN)
vTaVYTT(N)
WT=WTT{N)
TT=TTTI(N)
18 UT=UT#SUT
VTayT#SVT
WTsWT#SWT
TTsTT#STT
IF(PHIWeNE.O.0,ORe THEWoNE+0+0)1G0 TO 19
SUME(7)=SUME(T7)+UT
SUME (B)=SUME(B)+VT
SUME (9)=SUME (9) +WT
SUME(10)1rSUME{10)+TT
SUME(11)=SUMF (11)+UTe#yT
SUME({12)eSUME (12)+VT#WT
SUME(13)aSUME(13)+WTH#UT
. SUME (14)2SUME (14 )+4UTHTT
SUME(15)3SUME(15)14VTHTT
A SUME(16)=SUME({16) +WT*TT
SUME(171LSUME (17)+UuT##2
SUME{18)3SUME (18)+VT##2
SUME(19)=2SUME{19) +WT##?
| SUME(20)2SUME{ 20)+TT##2
( . 19 UPL2x((VF+UT ) #ET+VTRE2+WTHES ) k82
UPP2a(VM+UT ) #42+VTHEZ+wTHHI =P 2
ESQe( 1o O+AL#TT ) #AWH (10 0+GAMSAL T T ) #BWH { SORT (UPP2+CCH#UPL2) ) ##CN
. F-0.0
IF(ESQeGT.0.01E=SARTLESD)
CL=(ESQO-AW) /AW

o e Weadd M MR i PSRRI s
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. e e o
P

SUMF {1 )sSUMF{1)+F
SUMF (2) = SIIME (2 ) +FSQ ~..
SUME (3)=SUME(3)+CL o
SUMF {4 ) =GUIMF (4 ) «CL %42
SUME (S)1aSUME(S) +CL# 04
SUMF (A ) s SHIMF (£) +CL ##8
20 TF(IDeEQGe=20AND s NMAXeGTeOIWRITE(S421)UToVToWT o TToEL1+E20E30UPP2oUPL
124F
21 FORMAT(1H 19E12.5)
IF(NeLT+TABS{NMAX}) GO TO 14
FN=FLOAT(N)
NMAXz=TARS (NVAYX )
FasSUME{ LV /FN
E2B=SUME (2) /FN
LOR=SUMF (3} /FN
L1B=SUME(4)/FN
L28=SUMF (8 ) /FN
TF(PHIWNF2040s0Re THEWANES0:0)GO TO 24
HRX=SUMF (7} /FN
VARX=SHUF (R) /FN
waXeSUME (9} /FN
TRX=SUMF {10)/FN
UVRXsSUME (11)/FN
VWRXsSUMI (121 /FN
WUBX=SUME(13)/FN
UTBX=SUME(14)/FN
VIBX=SUME(15)/FN
WTBX=SUME(16)/FN
U2BXsSUME(17) /FN
V2AX=SUMF (1R) /FN
W2BX=SUME({19)/FN
T2BX=SUME (201 /FN
SHTX == N
IF(U2BX s GTUBRX##2 ) SUTX®SQRT (LU2BX~11BX#82)
SVTX==1.0
JIFIV2BXaGTaVBXR#2)SVTX=SORT (V2BX~VBX##2)
SWTXm=],0
IF{W2BXoGTeWBX##2) SWTXs5QRT (W2BX=WAX##2)
STTX=s=1.4C
TF{T2B8XeGTo TRAX##2)STTXsSQRT(T2BX-YBX#%2)
CKUVX = (UVBX=URX#VBX)/{SUTX#SVTX)
CKVWX2 (VWBX~VRYXIWRX )/ {SVTX#SWTX)
CKWUX = { #UBX=WBX#UBX )/ (SWTX®#SUTX)
CKUTX= (UTRX=RAXETRX )/ (SUTX#STTX)
CKVTX=(VIBX~VRX*#TBX)/{SVTX*STTX)
CKWTX=2(WTBX=-WRX#TAX)/(SWTX#STTX)
WRITE(6922)UBXsVBXsWBX s TBX s SUTXsSYTXoSWTXsSTTX ¢CKUVX s CKVWX 9 CKWUX ¢ C
IKUTX s CKVTX 9 CKWTX
22 FORMAT({SHNUBXEF 944 93X4HVEXIFI0abs3X4HWBXBF9e4s3XANTRXEF9 0k 3IXSHSUTX
12FB8e4sIXSHOVTIXEFBalksIXSHSNTXZFBab 9 3XSHSTTX2FBe4/TH CKUVXSF 7049 3X6H
2CKVWX=2F7 449 3XEHCKWUX2F 7049 3XO6HCKUTX2FT 04 s IXGHCKVTX=F 70k 9 3X6HCKWT X =
IFTe4)
IF(PHIWeNFe0sDeORe THEWSNEL040)GO TO 24
WRITE(6+23)
23 FORMAT(1HNe3XGHPHIWe3IX4HTHEW s 7X2HFB 9 SX2HSE9s6XIHLORs4XIHSLO¢SXIHLIB
196X3HSL]1 9 6XIHL?2By4XIHSL 29 1XTHLOB/LORyIXTHLIB/LIR»IXTHL2B/L2R 95X 3HR
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101 95X3HR02+5XIHR]D }

LNARsLOR

LI1R= 1A

L2R=L 2R

SE==1,0

IF(E28.GT.ER#%D jSE=SQRT({E2R-EB*#2) /FN) /ABS(EB)

Si.0=~1.0

IF(L1BeGToLOB#*2)SLO=SORT((LIB-LOR®#2) /FN)/ABS(L0B)

SL1==1,0

IF(L2RGTLIBR#2)SLY=SORT((L2B~L1AR*#2) /FN)/ABS(L 1R}

SL2==1,0

IF(SUME(E) /FNoGTaL2B##2SL28SORT( ({SUME(6)/FN=L2B#%2)/FN)/ABS(L2B}
RLO=LOB/LOR

RL1=L1B/LIR

RL2=L2B/L2R

RO1=LOR##2/L 1R

RO2=LOB##4/L 28

R12=L1B*®*2/L2R
WRITE(S6925)PHIWsTHEWIEB9SEsLOB+SLOsL1BsSL1+L2BsSL2eRLOWRLYIIRL29RO]
1sR024R12

25 FORMAT(1H 92FT7e294(F9e4sFTe4)rbFB4&)

RETURN
END

[EY LIRS0 NP ISR T AT TPV A




Appendix F

NUMERICAL CALCULATION PROCEDURE AND COMPUTING TIME

The overall numerical calculation procedure is outlined in the

following block diagram with a step by step description:
1. Read basic input data . 10. Calculate §' for all
; and instructions interior points
| I I
i 2, Decision making 11. Calculate or specify
. ; Z' and S! on all
boundary points where
3. Initialize calculations necessary
I A .
4, Calculate repeated 12. Calculate u', v'
constants l
J 13, Determine maximum
5. Calculate &t from . values of u and v
stability criterion LA i
l no
—4€—{ 14. Converged?
6. Execution time limit |Yes 4 kes
exceeded? L
l no 15, Output

7. Calculate % and thea T'
n

for all interior points @

8. Calculate or specify T',
on all boundary points
whers necessary

T

9. Calculate %z- and then 2'
for all interior points
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details of the above block diagram are described below:
The basic input data consist of the grid system, source size,

convergence eriteria, instructions for decision making, etc.

A list with explanations for these input data is given in Appendix G.

2.

7.

Several decisions are made in this step:
(a) For a starting calculations. Go directly to step 3.
(b) Ffor continuation of calculations: Read input data cards

from intermediate results of previous calcula.ions,

(c) For subdivi&ing mesh spacing: Read input data cards from
results of the converged solution of the previous calcula-
tions; and set the approximate values at the added mesh
points equal to the arithematic average of the known values
of the neighboring points.

At t = 0, set all dependent variables equal to zero except

for x S D/2.

Calculate all the repeated constants in the computer program.

Calculate At from the stability criterion (Equation 6-10).

If the execution time limit is exceeded, go to step 15 for card

output, This card output will be used for future continuation

of calculations as described in step (2b).

Calculate (%%)i _ from Equation (6-11) for all (i,j) interior
2]

to the boundaries (hereafter these points will be referred to as the

interior

points as opposed to the boundary points) and then calculate

T'i f for all interior points as follows:

R NPRE TR APPSR LW DL WIS AT T




T'i,j = Ti,j + (%r) -At

i,
where T'i,j represents the temperature at an advanced tim..*
8. Calculate or specify T'i,j for all boundary points using ihe
applicable boundary conditions, . - . ¢oprevious s Lo .

9. Calculate (%%)1 ;
H]

obtained and then Z'i J for all interior points.
’

using Equation (6-12) and the T'1 j just
. ]

10. Calculate S'i,j using Equation (6-13) for all interior points.
A Gauss-Seidel point iterative procedure is used. The scanning is
performed column by column (i.e., from j = 2 to jmax-1 for i = 2 to
imax-1), In the calculations the freshly calculated values of Si,j are
always used. The over-relaxation factor W is calculated from the

following formula (51, Section 7.17):

= 2 where A= L (cos—-—’-‘——-+ cos

®
— =)

The iteration is terminated as soon as the convergence criterion:

n+l n
51,5 = 54,3

- S EPS for every (i,j)

51,
is satisfied. Here, the superscript n means the n-th iteration and the
value of EPS used for all calculations was 0.001.

11. Calculate z'i’j and S'i,j for all boundary points using the

applicable boundary conditions discussed in Chapter VI,

*
Hereafter all primed quantities refer to those at an advanced
time,




12, Calculate “'i,j and V'i,j for all interior points using
Equation (6-14) end the stream function just calculated.

13. Determine the maximum values of u' and v' and label them as
Upay and Vpas, respectively.

14. Return to step 5 and repeat the complete cycle. The complete
calculation procedure is terminated when the fcllowing convergence

criterion is met:

i_b_;._'.f_}_a S107% for all (4,j).
1,]

Numerical results show that when this criterion is met, the maximum

error calculated in step 10 is usually smaller than 10'5, and all the

other dependent variables (u,v,T,S,Z) show no appreciable changes.

15. The output consists of: partial printout for intermediate
results during the calculation, card output when either the solution is
converged or the execution time limit is exceeded, and complete printout
for the numerical results of all the dependent variables.

The computing time depends on the combination of the array size and
the source size. For the cases studied, the computer execution time
required for obtaining a converged solution increases with Gr and the

source size. A summary of the execution time for the cases run are

given below:




No. Grid System* Time, min,
Grp = 104
1 13x15,1-4 3
2 17x25,1~7 11
3 17x13,1-5 6
4 17x17,1=-5 8
5 17x21,1-5 10
6 17x25,1-5 12
7 15%17,145 5
3 29x33,1-9 32
5
'C‘;rT = 10
9 15x17,1-5 8
10 17x33,1-9 14
11 21x33,1-17 17
*
See p. for explanation.
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Remarks

Continued from solution of
No. 1.

Continued from solution of
No. 7.

Initialized with solution of
No. 7.

Continued from solution
No. 9.

Continued from solution of
No. 10.




Appendix G

COMPUTER PROGRAM LISTING - FLOW FIELD CALCULATION

This computer program was written in FORTRAN IV computer language,

Five primary variables (the dimensionless indraft U, updraft V, tempera-

ture T, stream function §, and vorticity function Z) are computed for an

array of mesh points of IMAX x JMAX. There are four major parts in this

computer program: reading input data, calculating ail the repeated

constants, main body of the calculations, and output.

The input listing is described below:

IMAX, JMAX

11, J1
12, J2
K

LL

IM

KM

maximum values of I and J

IMAX - 1, JMAX - 1

IMAX - 2, JMAX -~ 2

a register of the time steps advanced

total number of iterations performed up to the K-th time
step

size of source radius, D/2 = (M - 1) Ax

=M+ 1

frequency of intermediate printout, i.e., one printout
after every other N time steps

number of columns per line in the printout

maximum allowable number of time steps to be advanced, a

limit to the computer time that may be used




11, JJ

GR
PR

EPS

TIM

TI

UMAX, UMAX

CARDS

READS

W
TEXC

DIVIDE

174

maximum allowable number of iterations for solving the
stream function

array size of the card output for the presently converged
solution (This array will be used as the input for finer
mesh spacing continued calculations,)

Grashof number

Prandtl number

convergence criterion in the iteration procedure for
solving the stream function, usually set at 0.001

= (0,0, for initiating the dimensionless time

a factor for adjusting the size of the time imnewval to be
advanced, usually set at 1.0

the ratio Ay/ax, 1.0 was used for the present calculations
the maximum absolute value of the component velocities u
and v

# 0.0 means card output is desired

# 0.0 means card output of previous calculations is to be
read in addition to the regular input of two cards
over-relaxation parameter

maximum allowable time for execution, a time control device
# 0.0 mean the data input from previous calculations is to
be interpolated to obtain the values at the new additional

points for a subdivided mesn spacing system




SKIP

co
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skipping instruction for boundary value specifications:
SKIP >0.0 means skipping S(IMAX, J), T(IMAX, J); SKIP =

2.0 means skipping T(IMAX, J), S(IMAX, J), Z{IMAX, I),

(I, IMAX)

convergence criterion (usually set at 0.0001), if met the
complete calculation is terminated and the complete results

are printed out
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DIMENSTION Ut43+63)s VIG3:¢03)0 T(03043)y 2(a3443)0 S(63443)e DINT (4
1364310 DZDTU43043)10CATL3)oCBLA3)sCCIL3)4CDIL3)CE(L3)4CF(43)0CG(43)
11 oCHI43)oCT(43)9CI(43)

201 FORMAT (/75X 26KSTREAM FUNCTIONS == S(leJ)}

202 FORMAT (/5Xs 25HRADIAL VELOCITY == U(1,4J))

203 FORMAT (//5Xe 2THVERTICAL VELOCITY == V{lsJ))

204 FORMAT (7/5Xy 2YHTEMPFRATURF »= T(T4J)}

208 FORMAT (7/75%Xy 19HVORTICITY == 2(1,4J))

206 FORMAT (1H1)

207 FORMAT (4X94HK = T4 e4Xs4HL = sT345XeTHTIME 2 4F12,5¢5Xs5HDT =
2E104345Xs5HDX = 2F64395X95HDY 3 yF6eI39BXe6HFPS = oF6,3+5X,
I5MTL = 4F643)

208 FORMAT (1H14//+78H NUMERICAL SOLUTION OF NATURAL CONVECTION NEAR A
2 CIRCULAR BOUNDARY HEAT SOURCE 24X s4HGR w4 F10393Xs4HPR =, Flol,
33X+ THGRID = 41241HXs12)

239 FORMAT (33X,1P9F11,3)

211 FORMAT (/)

212 FORMAT (1615/€E1063914F5,2)

213 FORMAT (6H K = oJlpsXobHL = 21334Xs6HTIME 39E110hekXo4HDT 2,E1)44
230Xy THOMAX = sE1144gbXoTHCONV = sE110k4XoSHLL = 418)

216 FORMAT (1P10E13,4)

217 FORMAT (13X41P7F13,4)

219 FORMAT (1P8&F10.2)

220 FORMAY (1P12F11,%)

22)1 FORMAY (3Xs1P7E11,4)

222 FORMAT (21104 1P4E1%.7)

C READ DATA INPUT « FOR CALCULATIONS AND CONTROLS
101 READ (542129 IMAX JUMAX 11 4U2 9124 20K oL L sMgMMyNGIM4KM, LMyTT4JJ
29GRIPRYEPSITIM 2TT 4 XY ¢UMAX sVMAX 4CARDS ¢READS oWoTEXCoDIVIDESKIP,CO
TCHK]1 = TIME(1,0)
WRITE (69212)IMAX4UMAY ¢ T143J19124J7 KoLl (MgMMaN IMKMy LMyTT,JJ
230R4PRGEPS,TIM QTIQXY.UMAX.VMAX.CARDS.RFADSOWOTFXCODlV'DF'S(!cho
CALCULATE REPEATED CONSTANT TERMS IN MAIN CALCULATIONS
XM = M=l
XN = N
DX = 0,5/XM
DY = Xy#DX
Dx2 = DX#DX
DY2 = DY#DY
C 2 14N/SORT(GR)
C1 = /PR
C2 = 2,0%(1,0/DX2+1,0/0Y2)
D & 0,5%D%2/7(1,04DX2/DY2)
DT = C1#C2
DXY2 = 2,04#Dx24DY?2
C11=1]
c12=1?
C2 u CrOeNYXeNY
Cb = 1(118DX)#82/2,0
1 DD 2 le2,IMAX
C1l s 1=]
COEFF = 2,0#CI11#DX
Al = Nn,5/CT11
RY 3 1,8%/C11




CALT)
CBI1Y
«cin
o1y
CEtLD
CFLI
Gt
CHTY
cren
2 CJin

RN NR N AN

177

(1,04A1)/0X2
(1.0=A1)/DNX2?
(1.0+BI)/DX2
{1.0-B13/0X2
(CTT%DX)#%2
COEFF#DX
COEFF#DY
Cl1ne2eDXY2
Al/7(DX%DY)
A1/DX2

IF (READS.NELC.O) 60 TO 107
C INITJAL CONDITIONS

5 DC 61
00 6 J
Utledy
Viled)
Tilsd
ZiTed)
Stledy

6
3 N0 & Ix1eM
4

Tilel

“ n x % o

GO TO 82
CARD RFEADING FOR CONTINUAT (ON
107 READ (%,222) KKoLLsTIMyUMAX s VMAX o GR
1F (DIVIDF.E0QeNe0) GO TO 106
C INPUT DATA RFANIKG Wk *' SURRIVISION OF MFSH SPACING 1% DFSTRFD
RFAD (562210 ((ULT o) oVIT o aTIT0J1eS(TsJ10Z(Tsd)s
2 JEl e JMAX 4 2)

1¢ DO 20
DO 20
Ulled)
Vileyd)
Tiledy
Stledy

2C 21

21 PO 22
no 22
Utledy
Viled)
TUl4Jdy
StleJy

22 2tleD

T(MM,1

19 IMAX
19 JIMAX
0.0

1.0

Jal o JMAX y 2

Ja243IMAX,2
(ULT=1vJI4U(T+]l4J))/2a0
(VII=1pJieViialed)1/s20
(TEI~14 04T (V1414011 /2eN
(S{T=1sJ)+S (1419 J}31/72eN
(2(1=10J}+2(14100))/260
JR2 4 IMAX 2

Is14IMAX

(UG adel)4U(TsU-1)17260
(ViIoJel)aVITa=1),/2eN
(T(]oJ+1 14T TyJm1)) /240
[S(T e+ 1480 T4J=1))/2,0
(2010411420 T9d=14)72400

= 04,0
IF (SKIP«NEL240) GO TO 88
READ (5+219) (TUIMAX J)s  J=2916+2)
READ (54+219) (TUTsUMAXYY  T=29IMAX42)
RFAD (%9219 (SCIMAX s s JsP0442)
RFAD (54219 (StTsJMAX)s I=24IMAX,2)
RFAN (hy210) (ZETMAX Y  Jz2960 20
RFAD (54219) (ZEToJMAX Yy 1229 TMAX,2}
GN T~ AR
106 READ (59221 (00074 Jyv gV Tad o T{Tad)eStTed)eZiled)y
;o J=1, ™Max)
88 X = XKw~,
~OTO 102

S12€

IxloIMAX92),

T=1,IMAX ),

S

e A &




“

MAIN CALCUL ATIONS
C TIME TO BE ADVANCED BASED ON STABILITY CRITERION
82 DT =  TI/{UMAX/DX+VMAX/DY+NT])
TIM = TIMeDT
80 TCHK2 = TIME(1,7)
£ FXFCUTION TIMF CONTROL
1F (TCHK2=TCHK]1GToTFXC) GO TO 100
K = K41}
IF (KeGToKM) 6C TO 100
¢ FNFRGY EQUATION
9 DO 10 122,11
na 1n J=e2,J1
IF (UlTsJ)) 51058952
51 T1 = UlTeIR(T(IeleJ) = T(1sJ13/70X
6N T0O %51
58 Y1 = ﬁ.ﬂ
6O TO 853
52 T1 = Ulie)®(T(10J) = TUT=14J))/DX
53 IF (VI19J)) 54+459,5%
56 T2 =2 VIIeJI#IT(IeJdel) = TU1ed))/DY
D TO %6
59 T2 = 0,0
GO TO 86
8 T2 = V(1o V™ T(T4J) = TiT,ei=133/DY
56 IF (1cF0L)) GO T0 9}
T3 « CA(IIRT{I4)1 o 1CBIIIT (=] s 1=C28T( T4 )4 (T(1oJ4]14T(1sJ=-11)/
10v2
GO T0 10
91 T3 2 4,08(T(2:J)=T(1eJ))/DX2+4(T(1sJ41)1=20%T(1,J)1¢T{)1eJ=111/DY2
16 DTDT(T4J) = ~T1=T2+L14T3
11 DO 12 1=2+11
RO 12 0 s 24
12 TiTeJdy = T(leJ) & OTEDTOT(1,4,J)

27 DO 28 [=MM,y 1Y
28 T(lel) = (180%T(142)1=9e0#T(Je3)42,08T(144)1/1140 NO FLUX
C SYIPx2sNe VALUES ON BOTH [IMAX AND JUMAX ARE FIXFDs SKIP=1,0, FIXFD ON IMAX ON
1F (SKTIP4FNe2.0) GO TO 43

17 00 18 1= 2,11
18 T(TeIMaX) = T(lsJ1)

43 DO 44 J=2vJ1
T1J = (18e0%T(20J)=9,0%T(34J)+2N#T(4yJ))1/11.0
IF (oNOTe(T1JehBTeNa0ANDeTI UL Tole0))) GN TO 4%
TF (T1JelTeT(2Z0d)) GO TO 45
Tiledy = T1y
60 TO 44

45 T(led) = T2
L4 CONTINUF
€ VORTICITY FQUATION

NIMAX & Nen

13 0O 14 122411
DO 14 Jx2,4J1
IF (U(TsJ1) 61468462

61 Z1 = Ull9Ji%(Z(]41ed) = 2Z(1edV)/DX
6O T0O 63




AR
62

63
64

3
66

az
a3

14
15

16
46

L7
70

77

179

7Y = AN
AN TA g
21 2 ULTeddn(2(14d) ~ 20I=1+J) /DX

IF (VIfeu)) UXY- LY XY

22 = VITo I #2614 Jue)) - Z(lsJsy /DY
60 10 46

72 = 00

60 TO a6

72 = VITo)®U7(14J) ~ 701eJd=1))/DY
IF {1eFQ4)) G0 TO 92

3 = CC‘Il’lfl‘loJ)+C0(I)'Z(I-loJ)*CZ*Z(!-J’#(Z(!lJ*l)*Z(T’J'l))/
1hye

26 = (T(I+14J) = TiI=1sd))%CUtl)

GO TO @3

73 = ﬂ.ﬂ'(7(70J)-Z(lQJ))/DX2+(Z(le*]J'?on’?()oJ)+Z(an‘i”/DYP
4 = 7.“‘(T(2;J)-T(1'J))/DXZ

NZDTIT4Jy = ~21=22+C%23474

2FRRON = APS(DZDT(YQJ)/Z(])J))

IF {ZERRORGT DZVMAX) DZMAX=2FRROR

DO 16 1 = 2,11

DO 16 U = 2,431

ZUTedt = Z(Ledy + DT#DZDT (1401

no 47 J=2yJ)

71J = (1R.A'Z(EgJ)—0.0.2(1'J)+2.“'7(6.J))/1).0 3-PT
28050y = 21y

L =n

L =L +

IF {LeOT oM 6O T0 15)

RMAX = 0.0

r SOLVING FOR STRFAMFUNCTION RY SUCCFSSTIVF OVFR=KFLAXATIONS

213

24

1581

29

31

32

M 24 1 =2 2,

DN 24 4z 24N

ns = n&(rﬂ(1|¢9(r¢1.J)*(A(V)fS(y-l.J)+ (SUTed+1y 4S50 au=1))/nY)
1 +CFITI#2 (1401

NSSOR = W'DSt(I.O—W)'S(IoJ)

[F (ARQ(S(chl)-LT.”olF-IS) GO TO 24
N = ABRINDSSOR/S(T 44y
IF (QeGTeRMAX) RMAX = 0

StTed) = DSSOR

06 = AHS(QMAX~1.0)/DT

IF (ONGT,FPS} a0 T0 7Y
NMAX = NN

L = LL+L

IF (SKIP.GT.040) 60 TO 3)
D0 10 U = 2,01

SIIMAX .U = S(T1,4)

DO 32 7 = 2,1MAX

IF (SKIPFN.2.0) GO TO 32
S{r JMAX) = SiT.01

70Y UMaXy s FliTed)

Z(lel) = (S(142) = BeN®S1T42Yyy/ CH{T1)

C SOLVING Fnoe VEIOCTITIFS

33

NO 3¢ 1 = p,11
no 34 g = >0
Utledy = CI(T) FUStTaJ+1)=S(TyUmyy

Lokl o




c

34
10%

35

36

39

40

41

L2

102

8l
100

180

Viled) =2 CHIIN(S{T=) e J)=S{T+140))

WRITE (6+213)

Ke Le TIM o, DTy QMAXs DIMAX, LL

IF (KalTo30) GO TO 3%

IF (DZIMAXWLTCO) 60 70 100

DO 36 J = 2yJ]

V1d 2 (18:N%V(24J)=9,N8V(3J142,N%V(4sJ))/11a0 . 3-PT

1F (V1JaGTaNeNy

UMAX = 0,0
PO 40 1=x 24 1)
DO 40 . = 24 J1

Utd = ARSIULTJM)
IF (U1JeGT4UMAX)

VMAX = 0,0
DO 42 1 = 1y 11
DO 42 U = 2, J1

VIJ = ARS{V(T.+J))
IF (VIJV.GTaVMAXY

¢ QUTPUT
112 IF (FLOAT(K)I/XNeNE+FLCAT(K/NY))

WRITE (64208)
WRITF (64207)
YRITF (84202)
WRITF (Ry220)
WRITF (6420
WRITE (64220)
WRITE (64204)
WRITE (64220)
WRITE (64201)
WRITF (&9220)
WRITE (/4205)
WRITE (4e?220)
GO TO 82

IF (IMAX.EQsIM)
WRITF (64208}
WRITE (64207)
WRITE (64+202)
1F (IMAX,GT,20)
WRITE (64+216)
WRITE (6+211)
WRITE (64217
WRITE (64203
WRITE (6+216)
WRITE (64211
WRITE (6,217
WRITE (6+204)
WRITF (6+216)
WRITF (L4211}
WRITF (64217)
WRITE (642011
WRITE (64+216)
WRITE (64211)
WRITE (6+5217)
WRITF (64+205)

VileJdy = VIJ

C PREPARATION FOR CALCULATIONS FOR THE NEXT TIME STEP

UMAX = Ul)
VMAX = VIJ
GO TO 82

GR s PR IMAX g JMAX
KoLsTIM sDToDXoDYsFPSsT]
(L TadYs T2 oIM)y  Ja) o JMAX)
(EVETad) e I=141M)y  Jul,UMAX)
((TUled)s IwloIM)y  JnlyJMAX)
((S(Tedyy Im1,4IM),y Jm),yJMAX)Y
(C(2ZCTed)y Im)yIMyy Jnl,UMAX)

GO TG 104
GR s PRy IMAX g UMAX
KoL oTIM sDTsDX9sDYsEPSHT!

GO 10 110
(LUCTed)rs 1219100 Jely UMAX)
(LULTed)y Is114IMAXYy Jm]oJMAX)
((VIIaJYs 1210103 J=1y JMAX)
tCVITald)e Ta119IMAX)y J=)pJMAX)
((T{Ted)y 1x1,410), JelyeJdMax)
((TUTadYe Ta119IMAXYy  Jm)gJMAX)
(iSUIsd)y 121,410) J=1lyJIMAX)
({SUTedys Te11eIMAXYy Jm)eJMAX)

vt 2 St e




181

WRITF (Ae216) ((7(Ted)s Tm1,410)Y, J=1e IMAX)
WRITF (64211
WRITFE (64217 ((2(30J0)s T12110IMAX), JuleJMAX)
GO TO 1Nn4
117 WRITE (6422N) ((UC(Tedre T21412)0 JsleJMAX)
WRITF (64211}
WRITF (6+2N9) ((ULTeJYe T213,TVMAXY, U=l o, JMAX)Y
WRITF (6+273) ,
WRITE (6422M) EEVITal)e 1214120 U=l o JVAX)
WRITF (6+211))
WRITE (64279) ((VITed)s Tm134TNMAXY s Js1eJMAX)
WOITE (642N4)
WRITE (/422N {'T0laJYe J21012)0 Jum]  JMAX)
WRITE (64211
WRITFE (69200Q) (0 (TedYe T213,1MAX Yy JUx] o JMAX)
WRITFE (A2
WOITF (Ae277) ((S{TelYe Tx1e17%, Uxl,yJSVMAX)
WRITF (64211
WRITE (64270 (CS{Tedre Tm139IMAXYy Jml o JMAX)
WRITE (6+205)
WRITE (6+220) ((Z0Tod)e 1219120 U=l JMAX)
WRITE (6+211)
WRITF (642n0) ((Z01ed)e Tm13,IVAX) s Jm] pJMAX)Y
1704 1F (CADNG,FNNN) GO TO 1n3
WRITF (74222 KoLLoTIMGUMAX VMAX 43R
1F (D7MAX LT CO) nD YO 1rA
WRITF (76221 ((UCTaJ)eVITaJ)oT{Tod eSSt TaS1e7(T0JdYy T131,TMAXY,
2 J=) . JMAX)
60 TO 103
108 WRITFE (74221) CtUCToJ)aVIToJd oT(T140)0S(10JY0Z(T0JYelmlell)odmleJJY
1A AR TA 1M
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13 ABSTRACT

The turbulent free convection of air above a 2-foot diameter, heated horizontal
plate has been studied experimentally and numerically. The mean temperature fields
and the indraft profiles for two mean plate temperatures were measured using a thermo-
couple and a constant temperature hot-wire anemometer. Also, the turbulence and mean
velocity were measured for the higher plate temperatur> using the hot-wire method. The
flow field was visualized by shadow photograph technique, From visualization and
measurements, it was found that the region of significant deviation from ambient
temperature and velocity was restricted to a region near the plate centerline (the
primary flow region). The indraft velocity was found to be relatively large near the
ground level (within approximately 1" of the ground).

! The major temperature drop took place in the region very near the plate. Within
[ 0.02" of the plate the temperature distribution in the air could be calculated based

on conduction only., This region was therefore, called the "conduction layer." At a

given mean plate temperature, the temperature gradient was found to increase with the
radius, Data obtained from heat-transfer measurements were consistent with the one-

third power correlation reported in the literature,

The turbulence in the flow field was found to consist of low frequency and high
amplitude fluctuations (on the order of 10 Hz and 1 ft/sec). Because of the limita-
tion of the hot-wire technique for large turbulence measurements, flow velocities
could not be deduced directly from hot-wire data. To remove this difficulty, a
numerical data simulation scheme has been developed in which the parameters describing
the turbulence flow (r.m.s. fluctuations and correlation coefficients) were used as
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input. By inferring from the simulated data of known parameters, experimental
hot-wire data reduction was then possible, Data reduction model was validated
by numerical experiments.

The eddy diffusivity in the region away from the conduction layer was
estimated based on temperature, velocity and turbulence data using two
independent methods. The agreement was good. The spatial variations of
the eddy diffusivity in most of the primary flow region was found to be
gradual with rapid drops cccurring in the region between the primary flow
and the cold ambient,

A numerical flow calculation was made. The mathematical formulation N
was based on Boussineaq approximations using a constant eddy diffusivity
model. A turbulent Grashof number Grp (the governing parameter) was defined
through the definition of a characteristic plate temperature rise AOT, the s
plate mean heat flux and the eddy diffusivity. Grp and Afp were obtained
based on the best fit of experimental and numerical centerline temperatures.

By the specification of Afp at the plate surface, the effect of the
intense variation of eddy diffusivity in the conduction layer region could
be avoided in the numerical calculations. Numerical results based on a
constant eddy diffusivity model were obtained and compared with the experi-
mental data, Due apparently to the non-constancy of the eddy diffusivity,
the calculated temperature and velocity profiles exhibit less constriction
than the experimental data. Therefore a more general turbulent transport
model will be required to provide a good theoretical description of the
phenomena,
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Turbulent flow
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